

Erasmus + Project No 598241-EPP-1-2018-1-RS-EPPKA2-CBHE-JP

Strengthening Educational Capacities by Building Competences and Cooperation in the Field of Noise and Vibration Engineering S E N V I B E

Survey and comparison of Serbian and EU education in Noise and Vibration

Deliverable 1.1

Date: 22/01/2019

Content:

1. Introduction	3
2. Noise and Vibration education in Serbia	5
2.1 General facts about Higher Education in Serbia	5
2.2 Public universities in Serbia	6
2.3 Private universities in Serbia	.10
3. Noise and Vibration education in the EU	.12
3.1 General facts about Higher Education in EU	.12
3. 2. European education in Acoustics and Vibration Engineering	.14
3.3. Representative undergraduate programmes in Sound and Vibration in Europe	э17
3.3.1 University of Southampton (Southampton, UK)	.18
3.3.2 DTU Technical University of Denmark (Lyngby, Denmark)	.19
3.3.3 University of Le Mans (Le Mans, France)	20
4. Summary and conclusions	23
Appendix I	.27
Appendix II	56
Appendix III	.58

1. Introduction

The project SENVIBE 'Strengthening Educational Capacities by Building Competences and Cooperation in the Field of Noise and Vibration Engineering' (598241-EPP-1-2018-1-RS-EPPKA2-CBHE-JP):

https://senvibe.uns.ac.rs/

has been approved for financing under the call Erasmus+ Capacity Building in Higher Education EAC/A05/2017, and will be coordinated by University of Novi Sad during the period 15 November 2018 – 14 November 2021.

The wider aim of the SENVIBE project is to improve and build national educational capacities, cooperation and competences in dealing with environmental and occupational Noise and Vibration (No&Vib) engineering issues in accordance with ongoing EU integration strategies and the needs identified in Serbia.

The very first task of the SENVIBE project (Task 1.1¹) covers the survey of education in Serbia and EU in the No&Vib fields at different types (levels) of higher education, with the focus on the following engineering disciplines: Mechanical Engineering, Electrical Engineering, Environmental Engineering, Occupational Safety and Health Engineering, Civil Engineering and Traffic Engineering. Given the survey results for Serbia, the main focus and the majority of the results regard undergraduate academic studies², while some details about the other ones are given as well. The Report covers accredited private and public universities in Serbia separately, which has not been done so far on the national level in this respect and in these fields. Besides the existence of courses/programmes, their content is also of interest. This Report provides a foundation for future activities in the SENVIBE projects, identifying possibilities for improvements regarding modernization of the existing courses in the No&Vib fields as well as the development and implementation of new courses for students of different programmes at different education circles, which will be dealt with in later stages of the SENVIBE project.

¹The tasks can be seen at the SENVIBE web-site, <u>https://senvibe.uns.ac.rs/about/#Outcomes</u>.

²Note that SENVIBE Task 1.4. Review and analysis of the existing MSc VAE programmes in EU regards Master programmes in this field in EU, while such Master programmes do not exist in Serbia. Therefore, thesse programmes are not included in this report, but in the Report for Task 1.4. In addition, MSc courses related to No&Vib tought in Serbia will be included therein as well for comparison reasons.

Given the fact that this Report regards certain national educational capacities, the info about it will be distributed to all project partners as well as to certain national, regional and local authorities, including the Ministry of Education, Science and Technological Development, the Ministry of Environmental Protection and the Conference of the Universities of Serbia, which encompasses all accredited universities in Serbia.

This section first provides general information about the higher education system in Serbia (Section 2.1) and then covers information about the education in the No&Vib fields in Serbia both at public universities (Section 2.2) and private universities (Section 2.3).

2.1 General facts about Higher Education in Serbia

The following link gives general information about the higher education system in Serbia (Accessed on 31 December 2018):

http://studyinserbia.rs/en/education/higher-education

There are two types of studies in the Serbian system of higher education:

- academic studies, organized mainly at universities, and
- applied studies, organised either at colleges of applied studies or at universities.

Serbia joined the Bologna Process in 2003 and thus initiated a gradual reform process, which received its legal support in 2005 via a new Law on Higher Education. This law formally introduced the European Credit Transfer System, three-cycle system of study and diploma supplement. From 2007/08, all new students study under the new reformed study programmes at all higher education institutions.

The three-cycle system of academic studies includes:

• **Bachelor (undergraduate) studies**, which usually last four years with 240 ECTS³, although three-year/180 ECTS Bachelor programmes are also available;

- Master studies lasting one-two years with 60 to 120 ECTS;
- Doctoral studies (PhD) with a minimum of three years of study or 180 ECTS.

There are also **integrated studies**, for example in the field of medical science, dentistry and veterinary medicine, which last six years and must carry a minimum of 360 ECTS.

³European Credit Transfer System. This is a central tool in the Bologna Process, which aims to make national systems more compatible. ECTS credits represent the workload and defined learning outcomes ("what the individual knows understands and is able to do") of a given course or programme. 60 ECTS are the equivalent of a full year of study or work.

In addition, the second cycle of academic studies includes **specialist academic studies** with the minimum duration of one year with 60 ECTS if a student has achieved a total of 300 ECTS in previous studies.

The two-cycle applied (vocational) studies consists of:

- Bachelor applied studies, which last three years and have 180 ECTS;
- Specialist applied studies, which carry 60 ECTS and last one year;
- Master applied studies, which last two years and carry 120 ECTS.

All higher education institutions must be accredited in order to obtain a license issued by the Ministry of Education, Science and Technological Development of the Republic of Serbia. Private higher education institutions (not founded by the state) have the same status as public ones.

An overview of undergraduate engineering curricula related to Noise, Vibration and Technical Acoustics are provided in separate sections for accredited public (Section 2.2) and private universities (Section 2.3) in Serbia. Note that this overview only regards engineering disciplines of interest for the SENVIBE project as emphasized in the Introduction section (Mechanical Engineering, Electrical Engineering, Environmental Engineering, Occupational Safety and Health Engineering, Civil Engineering and Traffic Engineering).

It is important to note that neither Bachelor programme for Vibro-Acoustics or Sound and Vibration, nor such Master programme exists in Serbia. This is a very important issue to be addressed by the SENVIBE project. There are no dedicated PhD programmes (doctoral academic studies) for it either. There are, however, some courses that students can have during doctoral academic studies, and some of them are listed in the next section. These are seen as only isolated examples and there is no evident, widely spread and continuous track in formal academic education in No&Vib through the three-cycle system in Serbia.

2.2 Public universities in Serbia

Task 1.1. of the SENVIBE project includes the analysis of study plans and programmes of basic academic studies at all accredited state universities in Serbia in certain engineering programmes (see the Introduction section for their list). Only accredited universities in Serbia are the members of the Conference of the Universities of Serbia (KONUS). Among them are the following state universities, which were included into this analysis:

- 1. University of Belgrade (<u>UBG</u>);
- 2. University of Novi Sad (UNS);
- 3. University of Niš (UNI);
- 4. University of Kragujevac (UniKG);
- 5. University of Prishtina with provisional headquarters in Kosovska Mitrovica (UPKM);
- 6. State University in Novi Pazar (UNP).

In addition to the institutes, centres and library, University of Belgrade comprises 31 faculties, five out of which were included in this analysis, as they belong to the field of technical and technological sciences: <u>Faculty of Architecture</u>, <u>Faculty of Civil Engineering</u>, <u>School of Electrical Engineering</u> (UBG-ETF), <u>Faculty of Mechanical Engineering</u> and <u>Faculty of Transport and Traffic Engineering</u>.

University of Novi Sad comprises 14 faculties, and this analysis covered the following faculties: the Faculty of Technical Sciences <u>(UNS-FTN)</u>, Faculty of Civil Engineering in Subotica <u>(UNS-GF)</u> and Technical Faculty "Mihajlo Pupin" <u>(UNS-TFMP)</u>.

There are 14 faculties within University of Niš, whose four faculties were covered by this survey: Faculty of Civil Engineering and Architecture <u>(UNI-GAF)</u>, Faculty of Electronic Engineering <u>(UNI-EF)</u>, Faculty of Mechanical Engineering <u>(UNI-MF)</u> and Faculty of Occupational Safety <u>(UNI-FZNR)</u>.

The University of Kragujevac is composed of 12 faculties, and the following three faculties were covered by this survey: Faculty of Engineering <u>(UniKG-FIN)</u>, Faculty of Mechanical and Civil Engineering <u>(UniKG-FMG)</u> and <u>Faculty of Technical Sciences</u>,

Faculty of Technical Sciences <u>(UPKM-FTN)</u> of the University of Prishtina is the only one that fits into the subject of this analysis from the remaining nine faculties of this university.

The State University of Novi Pazar is currently the only integrated university in Serbia and encompasses 10 departments, but only the Department of Technical Sciences (UNP-DTN) fits into the scope of this survey. The remaining faculties and departments at these six universities are omitted because the areas they deal with are not directly linked to No&Vib.

A detailed overview of the courses whose contents include No&Vib or their aspects, which are taught at accredited state universities in Serbia, is given in the table in **Appendix I**. In addition to the title of the courses, the table also lists the detailed content of the course, outcomes, methods of teaching, the name of the university and

the faculty or the study programme, as well as the source used for this survey. It should be emphasized that the search and analysis given herein is based on official data on these programmes, courses and course plans available at official websites of the universities and faculties. This implies that the situation is subject to changes depending on the accreditation dynamics for each individual study programme. For this reason, the last column of the table given in **Appendix I** specifies the date when details about these course were recorded.

At the completion date of this report, at the accredited state universities in Serbia, at targeted study programmes in the field of technical and technological Sciences, 31 courses were detected in basic academic studies, which directly, or at least to a non-negligible extent, deal with or contain aspects related to No&Vib and Technical Acoustics. The courses vary notably according to the degree of study of the subject matter. Courses that clearly or dominantly deal with No&Vib, Theory of Oscillations or Technical Acoustics are:

- Oscillation Theory (UNS-FTN, study programme Mechanical Engineering/Mechanical Engineering and Construction Engineering/Technical Mechanics and Design in Engineering/Manufacturing Engineering);
- Noise, Vibration and Design (UNS-FTN, study programme Mechanical Engineering);
- Acoustics and Noise Protection (UNS-FTN, Environmental Engineering);
- No&Vib [Protection (UNS-TF, Environmental Engineering);
- No&Vib (UNI-FZNR, Occupational Safety);
- Noise in the Environment (UNI-FZNR, Environmental Protection);
- Dynamics of Earthquake Engineering (UNI-GAF, Construction);
- Acoustics (UNI-EF, Telecommunications);
- Mechanics 4 (Oscillation Theory) (UNI-MF, Department of Mechanical Engineering);
- Machine Dynamics, MVM testing (UniKG-FIN, direction Mechanical Engineering);
- Sustainable Development of Motor Vehicles (UniKG-FIN, Department of Automotive Engineering);

- Basics of Environmental Engineering, Building (UPKM-FTN, Department of Civil Engineering);
- Electroacoustics (UPKM-FTN, Department of Electrical and Computer Engineering);
- Mining Protection Systems, No&Vib, Occupational No&Vib Protection (UPKM-FTN, study programme Environmental protection and safety at work);
- Vehicle Dynamics, Oscillation Theory (UPKM-FTN, study programme Mechanical Engineering);
- Technical Protection, Basics of Environmental Engineering (UPKM-FTN, Department of Mining Engineering);
- Electroacoustics (UNP-DTN, study programme Audio and video technology).

At the majority of universities, there are courses that, to a smaller extent, deal with noise, vibration or technical acoustics, such as:

- Electrical Acoustics (UBG-ETF, Department of Electrical Engineering and Computing, Modules Electronics/Telecommunications and Information Technologies);
- Introduction and Principles of Environmental Protection (UNS-FTN, Environmental Engineering);
- Stability and Dynamics of Construction (UNI-GAF, Civil Engineering);
- Sensors and Actuators (UniKG-FIN, Department of Mechanical Engineering).

It is important to point out here that the vast majority of the previously mentioned courses are elective. It should also be emphasized that there are a strikingly large number of directions and modules, where there are no courses dealing with the subject of No&Vib, although it is clear that by the nature of the study programme those courses should exist. For example, on accredited study programmes in the field of Traffic and Transport Engineering at the Serbian state university, there is no course in the basic studies on the subject. The absence of a subject is also apparent in the study programmes that have a large number of modules without a single subject from No&Vib. Such are the modules of the University of Belgrade (Faculty of Civil Engineering, modules: Hydraulic and Environmental Engineering, Road, Railway and Airport Engineering, Management,

Technology and Informatics in Civil Engineering, Structural Engineering) and modules of the University of Novi Sad (Faculty of Civil Engineering in Subotica, modules: Structures, Hydraulic and Water Engineering, Roads, Architectural Engineering, Geodesy).

As already noted, there are no dedicated PhD programmes (doctoral academic studies) for No&Vib in Serbia. There are, however, some courses that students can have during doctoral academic studies and are related to it entirely or partially (note that some of them do it to a very small extent). Some examples are:

- Advanced Topics of Missile Guidance, Selected Chapters of Mechanics; Advance Techniques in IC Engines – Selected Topics; Digital Processing of Nonstationary Signals; Dynamic Problems of Rail Vehicles; Inverse Analysis in Material Characterization; Product Development in Mechanical Engineering, Reliability and Dynamics of Power Transmission Units (Faculty of Mechanical Engineering, UBG);
- Room Acoustics, Acoustical Measurement Techniques, Modeling of Sound field, Selected Topics in Room Acoustics, Acoustic Design of Rooms units (School of Electrical Engineering, UBG);
- Selected Chapters in Acoustics and Audio Engineering (Electrical and Computer Engineering, UNS-FTN);
- Nonlinear Vibration (Technical Mechanics, UNS-FTN);
- Advanced Methods for No&Vib Control, Advanced Methods for No&Vib Measurements and Monitoring (Faculty of Occupational Safety, UNI);
- No&Vib of Mechanical Systems (Faculty of Mechanical and Civil Engineering in Kraljevo, UniKG);
- Vehicle Dynamics, Mechanical Vibrations, Machine Design (Mechanical Engineering, UPKM).

2.3 Private universities in Serbia

The following private accredited universities, which are the members of the Conference of the University of Serbia (<u>KONUS</u>) have been covered by this survey:

- 1. <u>Megatrend University, Belgrade;</u>
- 2. Singidunum University, Belgrade;
- 3. <u>Alfa University, Belgrade;</u>

- 4. European University, Belgrade;
- 5. Educons University, Sremska Kamenica;
- 6. Belgrade Metropolitan University, Belgrade;
- 7. University Business Academy, Novi Sad;
- 8. <u>Union University, Belgrade;</u>
- 9. <u>University 'Union-Nikola Tesla', Belgrade</u>.

After a detailed analysis of different plans and programmes at the mentioned universities, only one subject dealing with No&Vib was identified. It is run at the Faculty of Construction Management, <u>University 'Union-Nikola Tesla'</u>, Belgrade. At other universities, no courses on such subject were identified.

A detailed overview of the subject whose content includes No&Vib is given in the table in **Appendix II**. The search and analysis were based, as in Section 2.2, on the same form of the table from Appendix I. The last column of the table in Appendix II indicates the date on which a particular course is surveyed.

At the completion date of this report, in the field of technical and technological sciences, only one mandatory subject was detected in academic studies at private universities in Serbia, which is directly related to the field of No&Vib:

• Contemporary design methods, University 'Union-Nikola Tesla' Belgrade, Faculty of Civil Engineering, Department of General Construction.

3. Noise and Vibration education in the EU

This section provides first general information about the higher education system in EU (Section 3.1) and then about European education in Acoustics and Vibration Engineering (Section 3.2). Its last part (Section 3.3) describes in details three representative undergraduate programmes in Sound and Vibration in EU.

3.1 General facts about Higher Education in EU

Education is seen as essential to develop a more inclusive, cohesive and competitive Europe. The <u>renewed EU agenda for higher education</u>, adopted by the European Commission in May 2017, identifies <u>four key goals for European cooperation in higher</u> <u>education</u>:

- 1. Tackling future skills mismatches and promoting excellence in skills development;
- 2. Building inclusive and connected higher education systems;
- 3. Ensuring higher education institutions contribute to innovation;
- 4. Supporting effective and efficient higher education systems.

To help achieve each of these goals, the European Commission proposes specific actions at EU-level, primarily supported by different strands of the Erasmus+ and Horizon 2020 programmes. In particular, the European Commission supports:

- the exchange of good policy practices between different countries through the <u>ET2020 higher education working group;</u>
- the <u>Bologna Process</u>, designed to promote the internationalisation of higher education in Europe through more mobility, easier recognition of qualifications and streamlined quality assurance mechanisms;
- the development and use of mobility and recognition tools, such as the <u>ECTS</u> system and the <u>Diploma Supplement</u>.

The European Commission has recently taken a number of further initiatives:

- the concept of Networks of European Universities brings a major change to higher education practices, through integrated curricula and mobility, thus fostering quality, excellence and innovation;
- the proposed <u>Council recommendation on automatic mutual recognition of</u> <u>higher education and school-leaving diplomas</u> helps to remove barriers to student mobility within Europe;

• the future European Student Card will facilitate the secure exchange of student information and reduce administrative burden for higher education institutions..

The Study in Europe web-site, which covers higher education in 33 European countries, supported by the European Commission, gives general information about the higher education system in EU (Accessed on 17 January 2019):

https://ec.europa.eu/education/study-in-europe/planning-studies/european-highereducation_en

Each country has its own individual higher education system – but all are part of the European Higher Education Area (EHEA), whose system helps ensure that higher education systems across Europe are compatible. Qualifications across Europe are comparable through the European Qualifications Framework (EQF). The European Qualifications Framework is a translation tool that helps communication and comparison between qualifications systems in Europe. Its eight common European reference levels are described in terms of learning outcomes: knowledge, skills and competences. This allows any national qualifications systems, national qualifications frameworks (NQFs) and qualifications in Europe to relate to the EQF levels. These levels can be used to understand and compare qualifications awarded in different countries and by different education and training systems.

The main higher education qualifications offered across Europe include the following degrees:

- Bachelor's: most of them last three or four years;
- Master's: most of them last one or two years;
- **Doctorate/PhD:** most of them last around three or four years.

Besides these three main study levels, there are also other higher education qualifications – such as professional diplomas and more. Essential info on study programmes, scholarships and student life across Europe are given at

https://ec.europa.eu/education/study-in-europe/country-profiles

The majority of the countries in the <u>EHEA4</u> have adopted ECTS. The <u>ECTS Users'</u> <u>Guide</u> (online version) describes the ECTS credit system, and how to use it. A typical 'first cycle' (Bachelor's) Degree, would consist of 180 or 240 ECTS, whereas a typical 'second

⁴This is not the case for the UK, for example. Many universities in the UK use the Credit Accumulation and Transfer Scheme (CATS), which is described in Section 3.3.

cycle' (Master's) Degree, would consist of 90 or 120 ECTS, with at least 60 credits at second cycle level. The use of ECTS at the 'third cycle' (or PhD level) varies.

3. 2. European education in Acoustics and Vibration Engineering

The data collected and hosted in the database of the EEA (European Acoustics Association) Schola map provide a general overview of the education in the No&Vib Engineering:

https://euracoustics.org/activities/schola/

The EEA Schola map is actually an online study guide of Acoustics in Europe. Representatives from universities, faculties, departments, schools, institutes, called 'Schola Editors', insert the data of their courses, specific fields of acoustics research, and exchange programs. The map downloaded from the EEA Schola map (Accessed on 17 January 2019) shows the existence of a relatively dense representation in Europe, especially in the northern and central continental Europe.

Figure 1. EAA Schola map (downloaded on 17 January 2019)

A general overview of the education in the No&Vib Engineering for two countries that have the highest international reputation in this respect – the United Kingdom and Sweden is provided below⁵.

Higher education in the UK takes several forms. The first form encompasses undergraduate degrees:

- MEng Master of Engineering;
- BEng Bachelor of Engineering;
- BSc Bachelor of Science.

There are also postgraduate degrees, where the latter are separated into taught MSc programmes (typically two thirds taught content and one third research project), MRes programmes (typically a third taught content and two thirds research project), or full higher research degrees such as:

• <u>MPhil - Master of Philosophy</u>, which is a pure research degree, based entirely on the completion of an independent thesis. As such, it sits somewhere between other Masters qualifications and more advanced postgraduate research training:

• PhD;

• <u>EngD - Engineering Doctorate</u>, which is a degree of the same academic standing as a PhD, but with a very strong industrial focus.

Possibly unique to the EU and elsewhere, there are some undergraduate degrees in the UK that major in Noise and Vibration or similar in comparison to degrees that are more general, such as those in Mechanical or Electronic Engineering that have some small elements of Acoustics and Vibration. Another point of note is that only some of these specific undergraduate degrees are engineering degrees, only a smaller subset of which are recognised and accredited by professional engineering bodies, such as the IMechE (the Institute of Mechanical Engineers see http://www.imeche.org/). These accredited degrees meet the UK-Spec requirements for the academic content to be suitable to use for subsequent engineering registration as a chartered (CEng) engineer.

⁵These descriptions are written by the representatives of the EU partners in the SENVIBE project: Neil Ferguson from the University of Southampton, Institute of Sound and Vibration Research, Southampton, United Kingdom, and Hans Boden from the Kungliga Tekniska Högskolan, Stockholm, Sweden.

The following list shows the current degree title and location of taught undergraduate degrees in specifically Noise (Acoustics, Audio or Music Technology) and Vibration:

- Physics with Acoustics, BSc, University of Salford;
- Acoustical and Audio Engineering, BEng and MEng, University of Salford;
- Audio and Acoustic Engineering, BEng and MEng, Solent University (Southampton);
- Audio Engineering, BSc, Solent University (Southampton);
- Acoustical Engineering, BEng and MEng, University of Southampton.

Note that the previous list does not include degrees that are focused on music or are primarily vocational and cater for professional audio, sound recording, production or performance. In addition, there is a taught one-year part time diploma in acoustics and noise control for graduate entry run since 1975 by the <u>Institute of Acoustics</u>, the professional engineering body in the UK. This is primarily vocational focused covering fundamental science and engineering but also applicable modules in environmental noise, practical noise control and noise regulations for employed practitioners in environmental noise enforcement, noise consultants and can lead to partial academic exemption for the award of an MSc from a number of UK universities including Derby and Solent universities.

Many universities in the United Kingdom use, unlike the EU, the Credit Accumulation and Transfer Scheme (CATS), where nominally 10 CATS are equivalent to 5 ECTS. A full academic year is worth 120 credits and a full calendar year (normally only at postgraduate level) 180 credits. Typically, in England, Wales and Northern Ireland, a Bachelor's degree with honours requires 360 credits; an ordinary Bachelor's degree requires 300 credits; a foundation degree requires 240 credits; an integrated Master's degree requires 480 credits; a postgraduate taught Master's degree requires 180 credits (typically 120 taught CATS followed on in parallel with a research project worth 60 CATS points); and a professional Doctorate requires 540 credits with 360 at level 8.

<u>Swedish universities</u> offer degree programmes according to the European standard. This includes Bachelor's (usually three years long and 180 ECTS), Master's (one or two years long with 60 or 120 ECTS) and PhD programmes.

When it comes to the education in Acoustics and Vibration Engineering in Sweden, it is important to note that there are no BSc programmes in Noise and Vibration, but there are courses given in different programmes. The traditional Swedish

engineering degree is a five-year programme leading to a MSc in Engineering. These days, the five-year programmes are split into three years for a BSc and two additional years in an MSc programme. Each academic year, both for BSc and MSc, has 60 ECTS. The students at major engineering universities such as KTH – Royal Institute of Technology and Chalmers University of Technology are admitted directly to a five year MSc programme where they need to choose a Master programme for the last two years. They can get a BSc after the first three years, which would make it possible to apply to a Master programme at another university in Sweden or in another country. It is however very rare that students do this. There are also some three year BSc in Engineering programmes which are less theoretical and more focussed on engineering skills. A student in these programmes is, different from the students admitted to the five year (Master of Science in Engineering) programmes, not guaranteed a place at a Master programme but must apply in competition with other external students. The education during the first three years (the BSc part) is completely in Swedish, even though there may be course books in English. This is different from the education in Master programmes, which is completely in English, including Chalmers and KTH Master programmes in Technical Acoustics⁶. There is the BSc programmes in Luleå (Luleå University of Technology) and Örebro (Örebro University), but they are audio oriented.

3.3. Representative undergraduate programmes in Sound and Vibration in Europe

This section provides details of the undergraduate programmes at three universities which offer representative undergraduate programmes for the fields covered by this Report. They are:

- University of Southampton, Southampton, UK;
- Technical University of Denmark, Lyngby, Denmark;
- University of Le Mans, Le Mans, France.

An overview of each of them is given respectively in Sections 3.3.1, 3.3.2 and 3.3.3, while detailed descriptions of their course are given in the table in **Appendix III**.

⁶More details about these Master programmes will be given in the Report for Task 1.4 of the SENVIBE project.

The University of Southampton offers:

• <u>BEng/MEng (Hons) Acoustical Engineering (3/4 years)</u>.

Southampton's BEng Acoustical Engineering degrees combine a thorough grounding in the skills all engineers need with concentrated specialization in Acoustics, Vibration and their human effects. The first year provides a background in Acoustics, emphasizing the Physics and Mathematics of Acoustics, Sound and Vibration. The second year covers further Acoustics, Vibration, Mathematics, Design, Fluid Dynamics and introduces Audio Technology and Control. There is a total of 120 credits across two semesters. A large element is the design project. The third year differs from the previous two years as a student is offered a choice of modules to study alongside the compulsory ones. This allows a degree of specialization. In addition, students are strongly advised to undertake at least 20 weeks of engineering related work placements. This is typically achieved by 10-week placements after their second and third years or a single placement in a gap year after Year 2 or 3. All students also undertake a substantial individual project in Year 3. This can either be on a topic selected from a list proposed by teaching staff or it could be an idea of their own, with appropriate permission and guidance. It is expected that students will spend one third of their time in Year 3 on their individual project. At the end of Year 3 there is an exit award of BEng (Hons) Acoustical Engineering. Year 4 (MEng Acoustical Engineering only) features an extensive group design project to solve an industrially focused problem in an area of acoustics. Students are also required to take a selection of optional modules,

This BEng fully meets the academic requirement for registration as an Incorporated Engineer and partly meets the academic requirement for registration as a Chartered Engineer in the UK. MEng fully meets the academic requirement for registration as a Chartered Engineer. The planned intake involves 25-30 students, but the average number of applications per place is three candidates, which implies that there is a considerable interest for studying this programme.

According to the the <u>UK National Student Survey from 2018</u>, 92% of Acoustical Engineering students were satisfied or very satisfied with the overall quality of their course.

Students can also take the <u>Industrial Placement Year</u>, which is an additional yearlong module that allows them to apply for a placement with an engineering-based organisation. The successful placement is recognized on their Degree Certificate.

Graduates from this engineering degree course are highly employable. They are provided with a dedicated Employment Officer who help build their skills profile and point you in the right direction. The university also has connections with local, national and international employers. Their recent graduates work for a range of companies, from SMEs to large ones.

The courses are taught at the Institute of Sound and Vibration Research (ISVR). ISVR was formed in 1963, and was awarded the prestigious Queen's Anniversary Prize for its achievements in higher education and is one of the leading brand names in Acoustics, known and respected worldwide. ISVR facilities include two reverberation chambers, a large anechoic chamber, a product development lab for noise and vibration, a combustion noise rig and a range of electrodynamic shakers. The laboratories are well served with comprehensive control and preparation areas. A wide range of modern, highly specialised instrumentation is available. Single and three phase electrical supplies at 50, 60 and 400 Hz, compressed air and cooling water can be provided. Mechanical workshop and handling facilities are readily accessible. Access is also available to testing and research facilities, such as wind tunnels and water tanks for underwater acoustics, which are operated by other groups or departments at the University of Southampton. The facilities are complemented by a comprehensive suite of noise and vibration measurement and analysis equipment, dedicated automotive NVH manipulation software, optical and laser torsional measurement equipment, multihigh-speed data acquisition, digital sound quality and channel editing software. Analytical facilities include Finite Element, Statistical Energy, Modal Analysis packages and Matlab.

3.3.2 DTU Technical University of Denmark (Lyngby, Denmark)

The Technical University of Denmark (DTU) offers:

• <u>BEng in Electrical Engineering with a specialization in Sound and Acoustic</u> <u>Technology.</u>

This undergraduate programme lasts three and a half years, with the courses taught in Danish language. The education is structured as a compulsory basic education that extends over the first four semesters and includes compulsory courses that provide a foundation in Mathematics, Physics, Electronics, Programming and Signal Processing, but students also learn to develop analog and digital electronic systems. The second year is oriented towards professional and applied courses thus paving the path for a

choice of a specialization topic. This occurs during the fifth semester in form of an innovation course (common to all undergraduate engineering programmes), where emphasis is on interdisciplinary approach to executing innovative projects with industrial partners, as well as an additional pool of elective specialization courses. The specialization consists of 40 ECTS elective courses that can be selected from a list of over 60 different courses, a diploma engineering internship in a company of 30 ECTS (20 weeks) and a diploma engineering project of 20 ECTS (13 weeks) made in, or in collaboration with a company.

An excellent education in Sound and Vibration at this BSc, and also on the associated MSc and PhD levels are offered by <u>Acoustic Technology</u>, which is one of the research groups at the Department of Electrical Engineering at DTU. Their facilities include: two <u>anechoic rooms</u> (a large and a small one); <u>three reverberation rooms</u> <u>each of about 240 m³</u> (two adjoining rooms for measurement of transmission loss of walls, and one below one of the others for measurement of transmission loss of horizontal partitions); <u>one reverberation room of about 240 m³</u> for sound power and absorption measurements; <u>a scale model of a concert hall</u>; a <u>listening room according to IEC 268-13</u>, which can be used, for example, for loudspeaker comparisons.

3.3.3 University of Le Mans (Le Mans, France)

The University of Le Mans offers the following programme of interest for this report:

- 'BAC + 3 degree' Professional Licence Engineering (Licence professionnelle Ingénierie), Acoustics and Vibration;
- 'BAC + 3 degree' Engineer in Technical Sciences, specialization in Acoustics (Licence Sciences pour l'Ingénieur (SPI⁷), parcours Acoustique).

Note that '<u>Licence</u>' corresponds to a Bachelor degree, while the notation with '+3' indicates that one will complete three years of university studies after passing the French Baccalauréat⁸ exam. Attaining 180 ECTS will earn a Licence.

The main objectives of the <u>Professional Licence Engineering (Licence professionnelle Ingénierie)</u>, <u>Acoustics and Vibration</u> are: i) to train specialists in the field

⁷The SPI License changes its name at the beginning of 2019, for the first year of the license, and becomes Acoustic License and Vibrations). In 2021, the mention Acoustics and Vibrations will replace completely the mention SPI (<u>https://sites.google.com/site/licenceacoustiquelemans/home,Accesses</u> 19 January 2019). ⁸A diploma awarded by the French Ministry of National Education. It marks the successful completion of secondary studies and opens the doors to higher education.

of acoustics and vibrations, able to intervene in the sectors of transport, services, environment, materials, etc; ii) to promote the acquisition of professional skills in acoustic and vibration measurements and modeling; iii) to promote integration into the workplace through training including theoretical and practical courses taught by specialists in acoustics and vibrations (teacher-researchers and industry), and a 13-week internship in a company. This Professional License aims to train technicians specialized in acoustic and vibratory measurements and their diagnoses. According to the previous experience, after completing this degree, such specialists have found jobs in: offices study or control offices (45%), business related to transportation (21%) or large groups specialized in acoustics and industrial vibrations (23%). The first year contains courses that help students strengthen the basics in mathematics and physics. The second year introduces specialized courses. Objectives of the third year of specialization are: upgrade in acoustics and vibrations, acquisition of basic professional knowledge; 140 hours of a project; 165 hours of lessons learned by professional speakers and minimum 13 weeks internship.

The second option - Engineer in Technical Sciences, specialization in Acoustics will learn to: i) use the mathematical tools to model simple acoustic and vibration phenomena; ii) perform measurements and process their results; iii) validate a model by comparing its predictions to the experimental results and assess its validity limits; iv) utilize concepts in Mathematics and Physics to address specific problems in different industrial fields; v) implement algorithmic and programming techniques to develop simple data acquisition and processing applications, etc; vi) understand the professional world of acoustics (trades, functions and structures). The first year is a general year of scientific, socio-economic, cultural and linguistic education, and offers modules of discovery of acoustics. The Years of 2 and 3 make it possible to specialize progressively in acoustics. This is a unique programme in France. More than 2000 students have been trained for 25 years and a hiring rate of over 90% in the field of Acoustics as technicians, engineers, researchers and entrepreneurs.

Teaching staff is from the <u>Laboratory of Acoustics</u> (LAUM) at the University of Le Mans. In LAUM there are different specific rooms are dedicated to experimentation⁹: an anechoic room, a semi-anechoic room, an air-conditioned room for the characterization of absorbent materials, a soundproof room dedicated to urban acoustics activities, two optical holography rooms, two opto-acoustic rooms, a

⁹This list is provided by Professor Yves Aurégan, Directeur de recherche au CNRS, Laboratoire d'Acoustique de l'Université du Maine.

microtechnology platform, a room dedicated to the Evaluation and Non-destructive Testing (ECND) of materials, a room dedicated to the granular materials activity, a mechanical test room, a room dedicated to vibro-acoustic activities, a room housing research activities in guided acoustics with flow. In addition, a generic instrumentation pool is shared for all laboratory activities (impedance tubes, analyzers, vibrometers, synchronous detectors, fast camera, accelerometers, pressure sensors and microphones, amplifiers, pre-amplifiers and signal conditioners, signal generators, oscilloscopes, multi-channel acquisition systems and vibrating pots with associated amps).

4. Summary and conclusions

This Report is a deliverable associated with the very first task (Task 1.1) of the SENVIBE project 'Strengthening Educational Capacities by Building Competences and Cooperation in the Field of Noise and Vibration Engineering' (598241-EPP-1-2018-1-RS-EPPKA2-CBHE-JP):

https://senvibe.uns.ac.rs/

The wider aim of the SENVIBE project is to improve and build national educational capacities, cooperation and competences in dealing with environmental and occupational Noise and Vibration (No&Vib) engineering issues in accordance with ongoing EU integration strategies and the needs identified in Serbia. Its Task 1.1 covers the survey of education in Serbia and EU in the No&Vib fields at different types (levels) of higher education, with the focus on the following engineering disciplines: Mechanical Engineering, Electrical Engineering, Environmental Engineering, Occupational Safety and Health Engineering, Civil Engineering and Traffic Engineering. The main focus and the majority of the results regard undergraduate academic studies, while some details about the other ones are given as well.

The Report covers accredited private and public universities in Serbia separately, which has not been done so far on the national level in this respect and these fields.

There is no continuous track in formal academic education in No&Vib/Acoustic and Vibration/Sound and Vibration through the three-cycle system in Serbia. Neither Bachelor programme for Vibro-Acoustics/Sound and Vibration, nor such Master programme exists in Serbia. This is a very important issue to address by the SENVIBE project in future.

The survey conducted for Serbian public universities has shown three types of courses for undergraduate students of the investigated engineering departments: i) not related to No&Vib Engineering or Technical Acoustics, and they are out of the scope of this Report; ii) related to No&Vib Engineering; iii) having weak links with No&Vib Engineering or Technical Acoustics. This third group of courses is not covered by this Report. However, it has been noted that these courses, among which are, for example, courses of Physics or Engineering Mechanics, are usually taught at the beginning of academic studies. As such, they cover larger number of students with respect to the course under ii) and provide a good basis for widening the pool of the students that can be thought about this subject, contributing to the improvement of national educational capacities in the No&Vib fields. These courses are seen as suitable for

sustainability and will be covered by the corresponding Report of the SENVIBE project associated with Task 8.7. Institutional sustainability.

At the completion date of this report, at the accredited state universities in Serbia, at the targeted study programmes in the field of technical and technological Sciences, 31 course was detected in basic academic studies, which directly, or at least to a non-negligible extent, deal with or contain aspects related to No&Vib and Technical Acoustics (type ii) of courses described above. It is important to point out that the vast majority of these courses are elective. Thus, it is not known how many of these courses have been attended by students, which puts an additional question mark about the level of education in the No&Vib fields in Serbia among undergraduate students. The educational system would certainly benefit if a larger number of these courses would be compulsory. A detailed overview of the courses whose contents include No&Vib (or their aspects) and which are taught at accredited state universities has been tabulated. In addition to the title of the courses, the table created contains the detailed content of the course, outcomes, methods of teaching, the name of the university and the faculty or the study programme, as well as the source used for this survey. It is worth analysing in the future of the SENVIBE project which of them can be modernized.

It should also be emphasized that a strikingly large number of directions and modules has been detected, where there are no courses dealing with the theme of No&Vib, although it is clear that by the nature of the study programme those courses should exist. For example, on accredited study programmes in the field of Traffic and Transport Engineering at the Serbian state university, there is no course in the basic studies on the subject. The absence of a subject is also apparent in the study programmes that have a large number of modules and are expected to deal with No&Vib, but they do not include them. Such are the modules of the University of Belgrade (Faculty of Civil Engineering, modules: Hydraulic and Environmental Engineering, Road, Railway and Airport Engineering, Management, Technology and Informatics in Civil Engineering, Structural Engineering) and modules of the University of Novi Sad (Faculty of Civil Engineering in Subotica, modules: Structures, Hydraulic and Water Engineering, Roads, Architectural Engineering, Geodesy). This finding also deserves attention in future activities of the SENVIBE project, at least to alert authorities about it, its potential consequences or previous likely effects.

At the completion date of this report, in the field of technical and technological sciences, only one mandatory subject has been detected in academic studies at

private universities in Serbia, which is directly related to the field of No&Vib. The number detected is surprising and deserves the attention from related authorities.

Based on the online study guide of Acoustics in Europe, the existence of a relatively dense representation in Europe, especially in the northern and central continental Europe, has been noticed. It has been also found that there are countries in EU that have a continuous higher education that major in No&Vib/Acoustic and Vibration/Sound and Vibration through all three cycles, such as the UK and France. There are quantitative indicators for both of them implying that there is:

- very high interest among students to study these programmers;
- very high satisfaction of them with respect to what they acquired during studies;
- very high employability of them as researchers, technicians, engineers, and entrepreneurs, working in universities, companies, control offices, etc.

Three universities that offer representative undergraduate programmes in these fields have been analysed, two of which are from the countries mentioned previously (the UK and France) and one is from Denmark. All three representative undergraduate programmes have a high international reputation. They are carried out at: University of Southampton, Southampton, UK; University of Le Mans, Le Mans, France; and Technical University of Denmark, Lyngby, Denmark. Their structures have been analysed in details. In general, the first year provides a background in Physics and Mathematics and basics of Acoustics and Vibration. As the study continues, the level of specialization increases. This specialization is realized not only through the compulsory courses, but also via elective courses, a practically-oriented individual project and engineering-related work placements (internship). What is also striking is a very rich list of test facilities/pieces of equipment that students have at their disposal at these universities. Thus, establishing good and rich test facilities is one of the lessons learnt for Serbia and is also the fact to be presented to higher local, regional and national authorities. A list of courses related to No&Vib has been created for these three representative EU programmes. Besides for modernizing courses and modules during the SENVIBE project, they can be used for introducing new course in these fields in due course.

Prepared by

 Dragana Strbac, Dragi Radomirovic, Miodrag Zukovic, Niksa Jakovljevic and Ivana Kovacic

Novi Sad, 31/12/2018

Milan Stojiljkovic
Novi Sad, 10/01/2019

Compiled by Hans Bodén Stockholm 15/01/2019

Polished by Ivana Kovacic, Dragana Strbac, Neil Ferguson and Hans Boden Novi Sad, 22/01/2019

Approved by Project Coordinator Novi Sad, 22/01/2019

"This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein"

APPENDIX I

SURVEY OF THE EDUCATION OF SELECTED UNDERGRADUATE ENGINEERING PROGRAMMES IN SERBIA AT PUBLIC UNIVERSITIES: COURSES RELATED TO THE NO&VIB FIELDS

University Faculty	Course	Course content	Educational outcomes/ Purpose	Teaching methods	Reference	Date
Study program						
University of Belgrade	Electroacoustics	Appearances in sound propagation: terms, reflection, acoustic impedance concept, diffraction. Hearing sense and	Student will be able to understand problems which are	lectures, demonstrations, laboratory	https://www.etf.bg .ac.rs/en/fis/karton _predmeta/13E033	4.12.2018.
School of Electrical Engineering		human voice. Sound field in space: acoustical response, mathematical models. Electro acoustic converters:	resent when using electro acoustic devices in	exercises	E	
Electrical Engineering and Computing; module Electronics/Telecom munications and Information		general theory, speakers, microphones. Subjective aspects of the sound field, acoustic in ecology.	telecommunications and appearances in sound field. This is the basis for some other courses from audio system fields and			
Technology/ Master module: Audio and Video Communications			multimedia telecommunications.			

University of Novi	Theory of	Linear and nonlinear spring. Free	To acquire	Lectures	and	http://www.ftn.uns	26.11.2018.
Sad	Oscillation	oscillations with one degree-of-freedom	knowledge necessary	practice.		.ac.rs	
		of motion. Equivalent rigidity. Kinetic and	for a modern				
Faculty of Technical		potential energy of the one degree-of-	mechanical			http://www.ftn.uns	
Sciences		freedom system. Lagrange equations for	engineer.			.ac.rs/n546274806/	
		motion of the one degree-of-freedom				theory-of-	
Mechanical		system. Riley`s procedure for determining				oscillation	
engineering/		circular frequencies. Curled and					
Mechanization and		transversal oscillations of massive girders.					
Construction		Free oscillations with viscous friction force					
Engineering		and sliding force in the one degree-of-					
/Technical		freedom system. Forced oscillations in					
Mechanics and		the one-degree-of-freedom system.					
Technical Design		Forced oscillations under Dirak and					
/Production		Heaviside forces. Kinetic and potential					
Engineering		energy of the two degree-of-freedom					
		system. Lagrange motion equations for the two degree system. Integration of					
		the motion equation of the two degree-					
		of-freedom system. Forced oscillations of					
		the two degree-of-freedom system.					
		Resonance. Dynamic buffer. Influence of					
		viscous friction on small oscillations in the					
		two degree-of-freedom system.					
		Definition on the stability of motion.					
		Transversal oscillations of a string.					
		Longitudinal oscillations of a beam.					
		Curled oscillations of a beam. Transversal					
		oscillations of a beam. Critical speeds of					
		elastic shafts. Laval`s paradox.					

		The concept of council surplus size			bitter (/ ft	0/11/0010
University of Novi	Noise, Vibration	The concept of sound and noise.	Creating a deep	Lectures with	http://www.ftn.uns	26.11.2018.
Sad	and Design	Propagation of sound waves. Plane	insight into the	presentations	.ac.rs	
		waves. Spherical waves. Sound intensity	phenomena related	and animations.		
Faculty of Technical		and sound pressure. Acceptable sound	to noise and	Auditory	http://www.ftn.uns	
Sciences		pressure level from the noise. Acoustic	vibration, training	exercises.	.ac.rs/n1998577603	
		impedance. Sound power levels of noise	students to recognize	Consultation.	/noisevibration-	
Mechanical		sources and characteristics. Diffraction	and detect them as	Continuous	and-design	
engineering		and reflection of sound. Noise spectrum.	well as to remove or	monitoring of the		
engineering		Acoustics of enclosed space. Absorption	control unwanted	level of students'		
		characteristics. Reverberation time. The	consequences.	knowledge		
		size, shape and design of the rooms as		through four tests		
		the acoustic parameters. Noise isolation.		(mandatory).		
		Transmissibility. Vibration isolation.		Examination.		
		Technical measures of protection against				
		noise and vibration. Active methods of				
		protection. Passive methods of				
		protection. Identification of noise				
		sources.				
University of Novi	Introduction and	Introduction to Environmental	Acquiring Knowledge	Lectures.	http://www.ftn.uns	24.12.2018.
Sad	Principles of	Engineering as a discipline	of the basic principles	Auditory	.ac.rs/883986083/in	
	Environmental	(environmental crisis, the symptoms of	of environmental	exercises.	troduction-and-	
	Protection	the environmental crisis, new dimensions	protection required	Consultation.	principles-of-	
Faculty of Technical Sciences		of the environmental crisis, the goal of	for the profession.		environmental-	
sciences		environmental engineering, sustainable	Knowledge of basic		protection	
		development, interdisciplinary and	terminology and		protocilori	
Environmental		global approaches). Basic concepts of	principles of			
engineering		general environmental engineering (the	environmental			
		concept of system, system boundaries,	protection, necessary			
		energy and matter exchange through	for further study and			
		the boundaries of the system, the Earth	work in the field of			
		as a system, flows, cycles and structures	environmental			
		of living systems in environment, the				
			engineering.			
		structure of an open environmental				
		system). Water cycle and global cycles				
		of some chemical elements (Water				
		cycle, chemical elements, circuits, the				
		global carbon cycle in nature, the global				
		sulfur cycle in nature, global nitrogen				
		cycle in nature). Mutual influence of				

		civilization and the environment (the				
		development of cities, demographic				
		explosion, nutrition of the population).				
		The atmosphere, important parameters				
		of the atmosphere and MAC pollutants				
		in the atmosphere (the structure of the				
		atmosphere, the temperature in the				
		atmosphere). Noise as a specific type of				
		pollution (production of sound and its				
		transmission, sources of noise, permitted				
		levels of environmental noise). Sources,				
		characteristics and effects of pollution				
		(air pollution, sources of polluted air,				
		primary and secondary air pollutants, the				
		effects of air pollution, ozone as a				
		problem in the environment, global				
		heating). Basic principles of				
		environmental protection. The exercises				
		are examples of the computation tasks				
		which illustrate topics covered in				
		theoretical teaching, contributing to a				
		better definition, better observation and				
		better understanding of the topics				
		treated in the theoretical teaching.				
University of Novi	Acoustics and	The physical characteristics of sound (the	Students will learn	Lectures are	http://www.ftn.uns	1.12.2018.
Sad	Noise Protection	rules for the production and propagation	how sound waves	conducted using	.ac.rs	
		of sound waves). Audible range and limit	are produced and	Power Point		
Faculty of Technical		of the risk of damage to hearing (ear	how they propagate.	presentations	http://www.ftn.uns	
Sciences		sensitivity, phone and dB(A)). Room	They will acquire	available to	.ac.rs/n534212256/	
Sciences		acoustics (absorption/reverberation –	basic knowledge	students in .pdf	acoustics-and-	
		impact on the level and speech	about noise and its	format.	noise-protection	
Environmental		intelligibility). Devices for recording and	characteristics and	Presentations		
engineering		reproductions of sound (microphones,	impact on humans. In	with specially		
		loudspeakers, headphones). Audio	addition to basic	created audio		
		systems for recording of audio signals	elements of physical	and video clips		
		(selection and placement of	and physiological	and animations		
		microphones for recording of speech,	acoustics (what and	demonstrate		
		music and noise). Basic characteristics of	how human can	and illustrate key		
		the noise and its impact on humans	hear), students learn	details in the		

(level, spectrum and temporal character). The noise from multiple sources (equivalent and authoritative level, overall, specific and background noise). The regulations on permissible noise level in the working and living environments, regulations and standards (dB(A) and N-curves, the impact of noise dose during working hours). Measuring equipment and tools for noise analysis (sound level meters, filters, dosimeters, software tools). Environmental noise transmission; methods of measuring and noise protection). Noise in the workplace (acoustic power, methods of measuring noise control (prevention at source (technical and legal means), control of the transmission lines, and protection of the transmission ing noise, structural noise). Sound insulation (materials and structures, measurement of sound insulation of wall, floor and ceiling, windows and doors; regulations and standards, methods to improve the sound insulation). Prevention and protection from noise (acoustic barriers, sound absorbers, acoustic treatment of rooms and noise insulation, personal protection, active noise cancelling).abo		
	character). The noise from multiple sources (equivalent and authoritative level, overall, specific and background noise). The regulations on permissible noise level in the working and living environments, regulations and standards (dB(A) and N-curves, the impact of noise on certain activities, permitted noise dose during working hours). Measuring equipment and tools for noise analysis (sound level meters, filters, dosimeters, software tools). Environmental noise (traffic, construction and communal noise; sources and routes of noise transmission; methods of measuring and noise protection). Noise in the workplace (acoustic power, methods of measuring noise in the working environment, control measures and the protection of workers). Noise control (prevention at source (technical and legal means), control of the transmission lines, and protection of the receipt). Building acoustics (insulation material power, roads of penetrating noise, structural noise). Sound insulation (materials and structures, measurement of sound insulation of wall, floor and ceiling, windows and doors; regulations and standards, methods to improve the sound insulation). Prevention and protection from noise (acoustic barriers, sound absorbers, acoustic treatment of rooms and noise insulation, personal	and perm leve they expe mec devi tech mec acoi as w pow able qual prob and for n

lectures. The first
part of the
Course
(acoustics) is
followed by
auditory
exercises. The
second part of
the course (noise
protection) is
followed by
exercises in the
Laboratory of
Acoustics and
Speech
Technologies at
FTN. Visits to
several .
companies and
institutions in
Novi Sad are
arranged, where
students will
learn about the
measurement
devices and
software for
noise analysis, as
well as the
techniques of
measurement,
monitoring and
noise protection.
The students will

paper, whose defense is one of

prerequisites.

exam

the

				Independent student work is supported through the web portal of the Chair of Telecommunicat ions and Signal Processing - www.ktios.net.		
University of Novi Sad Techical faculty "Mihajlo Pupin" (Zrenjanin) Environmental engineering	Protection Against Noise and Vibrations	Theoretical and practical study: Definitions of the sound, sound wave, and noise; spreading of sound wave and sound field. Definitions of the sound pressure, sound intensity, and sound power. Fundamentals of physiological acoustics; equivalent levels of audibility; subjective feeling of sound pressure; relative volume; sound and phone levels. The physiology of sound receiving organs; impairment and disruption of normal perception of sound. Definition of the noise of technical systems and standard methods for experimental determination of its levels. Definition of communal noise in the working and living environments (equivalent levels, etc.) and experimental determination of its level. Legislation in the field of noise of technical systems; the ways of solving problems of noise in industry; the way of solving the problems associated with environmental noise and pollution by noise. Theoretical basis of vibrations; the concept of degree of freedom; system vibration and single-degree of freedom;	The targeted outcome to be achieved by the course "Protection against noise and vibrations" is that students gain the necessary practical and theoretical skills which enable them to perform independently: quantification of the level of noise and vibrations, application of the methods of their control, as well as solving the problems associates with noise and vibrations in working and living environments.	Lectures are conducted ex- cathedra, and exercises in direct work with students. Exercises are focused on solving concrete tasks from monitoring noise and vibration as in the "Practical teaching" section.	http://www.np.ac. rs/ http://www.np.ac. rs/downloads/knjig e_predmeta/eng/ avt_coursebook.p df	30.11.2018.

		concept of power system frequency; damping and modes of oscillation; system response to stimuli and experimental methods determination of system response. A harmonized system of declaring vibration levels of hands, arms, and human body. The permitted levels of vibrations and the corresponding legislation. The methods of reducing vibrations in order to reduce the level of human exposure to harmful vibrations.				
University of Nis Faculty of Occupational Safety Occupational Safety	Noise and Vibrations	Vibration: Basic terms and quantities for describing vibration. Vibration kinematics and dynamics. Fundamental principles of vibration generation and transfer. Fundamental principles of anti-vibration foundation. Effects of vibration on humans. Vibration of the hand-arm system. Vibration transferred onto humans. Wave equation. Wave types. Sound field types. Basic noise types. Classification according to time and frequency character of noise. Basic terms and quantities for describing noise. Outdoor generation and propagation of noise. Point sources of noise. Sound pressure, intensity, and strength. The term, addition, and subtraction of noise level. Subjective assessment of noise intensity. Energy physiological quantities. Indoor generation and propagation of noise. Noise level in diffuse sound field. Reverberation time. Noise level in spaces with high absorption coefficient. Sound isolation. Mechanisms of hearing organs	Acquiring theoretical knowledge in mechanical and acoustic oscillations. Enabling students to identify the phenomena of noise and vibration in the occupational environment, to identify and characterize noise and vibration sources, to assess noise and vibration affecting workers, and to apply acquired knowledge to occupational safety engineering. Learning outcomes: understanding physical laws of generation and	Lectures and laboratory work	https://www.ni.ac.r s/en/studies-and- admission/studies/ course- catalogue/courses /category/227- occupational- safety	26.12.2018.
		and sound perception. Effects of noise on humans. Noise and vibration measurement. Measuring chain and	propagation of mechanical and sound waves,			

		basic measuring parameters. Selection of measuring points. Indicators of noise and vibration affecting humans. Allowed values. Noise and vibration assessment. Standards and regulations. Calculus problems in noise and vibration. Measurement in the field provides students with practical skills for basic measurement, calculations, and analyses of obtained experimental results.	calculating indoor and outdoor noise level, calculate energy physiological quantities, measuring, analyzing, and assessing vibration affecting humans; implementing current standards and regulations.			
University of Nis Faculty of Occupational Safety Environmental Protection	Environmental Noise	Wave equation. Wave types. Sound field types. Basic noise types. Division according to time and frequency of noise. Basic terminology and physical quantities for noise description. Outdoor noise generation and propagation. Point sources of noise. Sound pressure, intensity, and strength. Term, addition, and subtraction of noise levels. Subjective evaluation of noise strength. Energy physiological quantities. Indoor noise generation and propagation. Noise level in a diffuse sound field. Reverberation time. Noise level in spaces with high absorption coefficient. Sound isolation. Environmental noise sources – basic characteristics. Mechanisms of hearing organs and sound perception. Effects of noise on humans. Noise measurement. Measuring chain and basic measuring parameters. Selection of measuring points. Noise indicators. Allowed values. Noise assessment. Standards and regulations. Calculus problems in noise and vibration. Measurement in the field provides students with practical skills for basic	Acquiring theoretical knowledge in the field of acoustic oscillations. Enabling students to identify the phenomenon of environmental noise, identify and describe environmental noise sources, and to evaluate noise and apply the acquired knowledge to the field of environmental engineering. Learning outcomes: understand physical laws of sound wave generation and propagation, calculate indoor and outdoor noise levels, calculate energy physiological quantities, measure, analyse, and asses noise level conditions;	Lectures, exercises, consultations, graphic works	https://www.ni.ac.r s/en/studies-and- admission/studies/ course- catalogue/courses /category/228- environmental- protection	26.12.2018.

		measurement, calculations, and analyses of obtained experimental results.	and implement current standards and regulations.			
University of Nis Faculty of Civil Engineering and Architecture Civil Engineering	Structural Stability and Dynamics	The equations of the theory of finite deformation and second order theory. Linearized second order theory. The concept and formulation of stability criteria. Differential equations of the right rod at the second order theory and its solution. The method of initial parameters. Application of Methods of deformation. Buckling in plastic area. Dynamic load and dynamics methods of construction. Oscillation system with continuously distributed mass. Free and forced vibrations with one degree of freedom. Free and forced vibrations with several degrees of freedom. Introduction to Engineering Seismology. Calculation of buildings and engineering structures to earthquakes according to our regulations and Eurocode 8. Application of modern computational programs for the analysis of structures under seismic effects.	That student can practically apply the acquired knowledge in solving problems of the second order theory, the problems of structural stability and implementation of structural dynamics in engineering and manufacturing seismic analysis of engineering structures and buildings in practice.	Lectures, exercises, consultations, graphic works	https://www.ni.ac.r s/en/studies-and- admission/studies/ course- catalogue/courses /category/843- building- construction	25.12.2018.

University of Nis Faculty of Civil Engineering and Architecture Civil Engineering	Structural Dynamics with Earthquake Engineering	Practice accompanies lectures and exercise program is the same program of lectures. The exercises are performed numerical examples, a prominent example of graphic works, graphic works and test tasks.	To learn about the dynamic loads, as well as to master the basic knowledge necessary for the calculation of engineering structures under dynamic loads, especially seismic loads.	Lectures, exercises, consultations, graphic works	https://www.ni.ac.r s/en/studies-and- admission/studies/ course- catalogue/courses /category/845- structural- engineering	24.12.2018.
University of Nis Faculty of Electronic Engineering Electrical Engineering and Computing	Acoustics	Sound as a phenomenon. Characteristics of sound field. Sound waveguides. Plane and spherical waves. Sound sources. Electro-acoustic transducers (microphones, headphones and loudspeakers)-construction, working principles and characteristics. Analogies. Room acoustics (wave, statistical, and geometrical theory). Physiological acoustics (auditory system function). Psychological acoustics (subjective effects of sound). Generation and characteristics of speech and musical signals. Noise. Recording, storage and reproduction of audio signals. Acoustic and audio signal processing.	Acquiring basic theoretical and practical knowledge about sound, its generation and transmission, sound sources, transducers, room acoustics, acoustic signals, sound perception and its consequences. Theoretical knowledge in the field of sound; Application of theoretical knowledge in analysis, modeling and design of acoustical systems and systems containing acoustic components, acoustic design and sound insulation. Adequate usage of	Lectures, exercises, laboratory exercises, exercises in a studio, consultations	https://www.ni.ac.r s/en/studies-and- admission/studies/ course- catalogue/courses /category/661- telecommunicatio ns	25.12.2018.

			acoustic components and equipment.			
University of Nis Faculty of Mechanical Engineering Mechanical Engineering	Mechanics IV - Theory of Vibration	Modeling of single degree-of-freedom (SDOF) systems. Springs in combination. Viscous damping. Energy dissipated by viscous damping. Static deflections and gravity. Small angle or displacement assumption. Equivalent systems method. Standard form of differential equation. Free vibrations of undamped system. Critically damped free vibrations. Over damped free vibration. Forced response of an undamped system due to a single- frequency excitations. Forced response of a viscously damped system subject to a single-frequency harmonic excitation. Two degree-of-freedom systems. Natural frequencies and mode shapes. Free response of undamped systems. Free vibrations of a system with viscous damping. Dynamic vibration absorbers. Forced vibrations of two degree-of- freedom systems. Vibrations of continuous systems. Strings, Bars and Shafts. Transverse beam vibrations.	Students' ability to model and solve specific technical problems.	Lectures, exercises, laboratory exercises, homework, colloquiums	https://www.ni.ac.r s/en/studies-and- admission/studies/ course- catalogue/courses /category/848- mechanical- engineering	25.12.2018.

University of Kragujevac Faculty of Engineering Applied mechanics and automatic control/ Mechanical Engineering	Sensors and Actuators	Introduction. Terminology. Structures of systems that include sensors and actuators. Static and dynamic characteristics of sensors and actuators. Criteria for selection of sensors. Systems for acquisition and data processing. Measurement of movement, velocity, acceleration, vibration. Measurement of force and tension. Measurement of pressure. Measurement of temperature. Actuators. Electromechanic actuators. Electro-magnets. Electric motors. Hydraulic actuators. Hydraulic components. Functional and technical characteristics. Pneumatic actuators. Pneumatic components. Functional and technical characteristics. Non- conventional actuators. Actuators as components of systems. Diagnostics of failure of sensors and actuators.	Understanding of structure, model, general characteristics, functioning principles and implementation of representative categories of sensors and actuators.	Teaching with ex-cathedra approach with multimedia presentations and interactive work with students. Auditoria exercises combine ex cathedra approach and computer tools. Laboratory exercises refer to fields of implementation of sensors and actuators.	http://www.mfkg.rs /eng/sajt/Downloa ds/Studije/Akredita cija/Osnovne/M5/ Obavezni/bm6251 _sensors_and_actu ators.pdf	24.12.2018.

University of	Machine	Theoretical study. Experimental	By the end of this	Lessons, auditory	http://www.mfkg.rs	24.12.2018.
Kragujevac	Dynamics	determination of centroid location and	course, students	and laboratorial	/eng/sajt/Downloa	
		moment of inertia. Balancing of planar	should be able to	classes,	ds/Studije/Akredita	
Faculty of		mechanisms, Balancing of rigid rotors;	determine the	independent	cija/Osnovne/M5/I	
Engineering		single plane and two-plane balancing;	moment of inertia of	work.	zborni/bm6351_ma	
		analytical and experimental field	a body, to		chine_dynamics.p	
Applied mechanics		balancing methods, Balancing of	determine imbalance		df	
Applied mechanics and automatic		multicylinder engines, Elastodynamic	and balancing of			
		analysis of the high speed mechanisms,	mechanisms, rotors,			
control/ Mechanical		machines vibrations. Isolation of	and multicylinder			
Engineering		vibrations. Practical classes.	engines, to solve			
		Measurement of the moment of inertia,	problem of machines			
		Balancing of rotors in its own bearings.	vibration isolation.			
University of	Testing of Motor	Theoretical study. Measuring principles,	Based on acquired	Lectures,	http://www.mfkg.rs	24.12.2018.
Kragujevac	Vehicles and	characteristics of measuring components	knowledge, students	exercises	/eng/sajt/Downloa	
	Engines	for vehicle testing, structures of	should know to select		ds/Studije/Akredita	
Faculty of		experimental systems, methods,	adequate measuring		cija/Osnovne/M8/I	
Engineering		experimental installations and types of	equipment for		zborni/bm6432_tes	
5 5		testing of vehicles aggregates and	concrete testing task,		ting_of_motor_vehi	
Road traffic/		systems, testing of functional	to form a measuring		cles_and_engines.	
Mechanical		characteristics of engine, testing of main	chain, to conduct		pdf	
Engineering		clutches and gearboxes, testing of	the measurements, to			
Lighteening		articulated couplings and power trains,	record the			
		testing of suspension systems and	measuring signals for			
		carrying structures; testing of complete	further analyses and			
		vehicle, identification of the parameters	Use.			
		influencing the				
		vehicle performance, testing of vehicle				
		performances, testing of vehicle				
		drivability, testing of				
		vehicle vibration processes,				
		measurement of vehicle noise levels.				

						00.10.0010
University of	Sustainable	Natural resources and their reserves. The	After successful	Interactive at	http://www.fink.rs/i	09.12.2018
Kragujevac	Development of	influence of the preparation of materials	completion of the	lectures and	mages/stories/PDF	
	Motor Vehicles	for the production of vehicles on the	course, the student:	exercises, writing	<u>/2018 nove knjige</u>	
Faculty of		environment. The influence of vehicle	(1) recognizes the	two seminar	_predmeta/23.10.2	
Engineering		production on the environment. The	influence of vehicle	papers. The final	<u>018/Prilog_5.2_Knji</u>	
5 5 5		content of exhaust gases of the vehicle.	production on the	seminar paper	<u>ga predmeta Aut</u>	
Automotive		The influence of vehicle use on the	environment, (2)	involves making	<u>omobilsko_inzenjer</u>	
Automotive		environment. "On-board" diagnostics in	knows the effect of	a presentation of	stvo OAS 3.pdf	
engineering		the function of reducing pollution from	using the vehicle on	the previous two		
		the exhaust gases of the vehicle. Traffic	the environment, (3)	papers and a		
		noise and vehicles. Recycling of motor	knows the	public defense		
		vehicles. Legislative acts. The emission	importance of on-	of the same.		
		from vehicles with petrol, gas and diesel	board diagnostics on			
		engines will be practically measured.	the quality of exhaust			
		Withi-the-framework of the study	gases of the vehicle,			
		research work, students will be trained in	(4) knows the basics			
		basic field research and performing	of recycling vehicles,			
		environmental impact analysis of	(5) know basic			
		vehicles.	standards in the field			
			of ecology of motor			
			vehicles.			
University of	Maintenance &	Models of maintenance and analysis of	Ability to identify,	Lectures,	http://www.mfkv.k	09.12.2018
Kragujevac	Diagnostics	application possibilities. Defining	define and solve	auditory and	g.ac.rs/documents	
		parameters for monitoring the quality of	engineering problems	laboratory	/knjiga-	
Faculty of		maintenance and condition of	in the field of	exercises. Visits	predmeta/oas-mi-	
Mechanical and Civil		equipment. Diagnostic methods, devices	maintenance and	to local	knjiga-predmeta-	
		and their specific application.	diagnostics, and	enterprises.	2014.xls	
Engineering.		Organization, information system,	develop the ability to			
		planning and effectiveness of the	use modern			
Mechanical		maintenance process. In laboratories	diagnostic			
Engineering		and enterprises in the region, diagnostic	equipment.			
		measurements of vibrations, noise, SPM,				
		temperature, geometric accuracy are				
		performed and real reports with state				
		estimates are made.				

		1	1			
University of Kragujevac Faculty of Mechanical and Civil Engineering. Mechanical Engineering	Vibration of Mechanical Systems	The concept of oscillation. Classification of oscillatory processes and systems. Linear oscillatory systems with a finite number of degrees of freedom. Linearization of differential equations of motion. Stability of mechanical system balance. Free oscillations of linear conservative systems and linear systems with dissipation. Forced oscillations of linear systems. Oscillations of linear systems with distributed parameters: free longitudinal, torsional and transverse oscillations of a constant cross-section rod. Engineering applications.	By acquiring the necessary knowledge of the oscillatory processes of linear mechanical systems with finite number of degrees of freedom and distributed- parameter systems, students will be able to solve oscillatory problems from the domain of road and railway vehicles, robotics, dynamics of machines, mechanisms, mining and construction machines and devices.	Lectures, auditory exercises.	http://www.mfkv.k g.ac.rs/documents /knjiga- predmeta/oas-mi- knjiga-predmeta- 2014.xls	09.12.2018
University of Kragujevac Faculty of Mechanical and Civil Engineering. Mechanical Engineering	Dynamics of Machines	Basic terms, concepts and definitions. Dynamic drive models. Differential equations of motion of machines and mechanisms. Modes of motion. Transient processes. Basic concepts and methods of vibrating machines. Principles of active and passive vibration isolation. Linear vibrators. Dynamic oscillation absorbers. Impact oscillators. Vibration machines and their use in technology. Balancing the rotational parts of machines. Static and dynamic balancing. Friction in kinematic pairs of mechanisms. Friction angle and friction circuit in kinematic pairs. The occurrence of self-locking and sticking (locking) in the mechanisms as a result of friction. Dynamics of machines and mechanisms with elastic members. Elastic shaft with	By mastering the necessary knowledge in the dynamics of the machines, students will be able to apply the existing analytical methods and modify them in accordance with the nature of concrete problems in the domain of machine dynamics using program packages for symbolic and numerical analysis and to successfully follow new	Lectures, auditory exercises.	http://www.mfkv.k g.ac.rs/documents /knjiga- predmeta/oas-mi- knjiga-predmeta- 2014.xls	09.12.2018

		an ideal central disc. Elastic shafts with an eccentric drive. Critical shaft speeds. Influence of the gyroscopic effect at critical speeds. Elastic multi-disc shaft. Dynamics of mechanisms with variable mass of members.	achievements in this field of technique			
University of Kragujevac Faculty of Mechanical and Civil Engineering. Mechanical Engineering	Measurement Techniques	Basic Measurement: Measurement Errors; Static and Dynamic Characteristics of Measuring Systems; Converters Used in Mechanism for Measuring Distance, Acceleration, Angle, Speed, Acceleration, Deformation, Force, Moment, Power, Pressure, Level, Flow and Fluid Temperature. Laboratory exercises examining the characteristics of first and second-order converters in the example of temperature and force converters and demonstrating measurements with an accelerometer, a noisemeter and a 3D scanner.	The student is familiar with the structure of digital measurement systems, as well as working principles, static and dynamic characteristics of converters used in mechanical engineering.	Lectures, auditory and laboratory exercises.	http://www.mfkv.k g.ac.rs/documents /knjiga- predmeta/oas-mi- knjiga-predmeta- 2014.xls	09/12/2018
University of Kragujevac Faculty of Mechanical and Civil Engineering Mechanical Engineering	Noise Protection	Physical and physiological noise concepts, noise measurements, indoor noise, communal noise, noise forecasting models, noise estimation and noise control.	Broad education, necessary for analyzing and understanding of existing engineering solutions in the field of environmental protection. Ability to design a noise protection system using a methodology learned at the course itself as well as at some of the previous	Lectures, laboratory and field exercises.	http://www.mfkv.k g.ac.rs/documents /knjiga- predmeta/oas-mi- knjiga-predmeta- 2014.xls	09.12.2018

	Basics of		courses. Ability to work in multidisciplinary teams.	Lectures,	bttps://drive.geo.st	09.12.2018
University of Pristina Kosovska Mitrovica	Environmental Engineering	Through this course, students will be introduced to the basic concepts and principles of ecology, the environmental	successfully pass the exam will have an	exercises.	https://drive.googl e.com/file/d/0B_H n-	09.12.2018
Faculty of Technical Sciences		protection and ecological factors, their classification, then geoetics, forms of pollution and environmental protection	ecological way of thinking, which will thus become the		Zw3UTaudjVZU0N2 QkZPV28/view	
Civil Engineering		in general. Basic principles of ecological engineering, business design. Planet Earth - global environmental problems. Pollution and protection of soil, creation, characteristics, manner and types of pollution. Pollution and water protection. Natural pollution, pollution of surface, groundwater, industrial waters. Pollution and air protection. Air pollutants with production activities, combustion of fossil fuels, sources and classification. Radioactive contamination and protection. Noise and Noise Protection. Monitoring, models of transport of pollution. Municipal solid waste management: collecting, sorting recycling. Hazardous medical waste. Utility solid waste depot. Industrial waste management Legal regulations in the field of environmental protection. National regulations. EU Directive. Education in the field of environmental protection. Local environmental action plans. The role of NGOs.	basis for later behavior and attitudes towards the environment and nature as a whole. The student will be able to critically reflect on existing problems in the context of an engineering approach to nature conservation from the aspect of environmental protection.			

University of Pristina Kosovska Mitrovica Faculty of Technical Sciences Civil Engineering	Building	Defining the field of building. Building set. Massive buildings. Skeletal buildings. Foundations. Intermediate structures. Non-constructive elements. Stairs. Roofs. Insulations. Hydro isolation. Thermal isolation. Acoustic insulation. Fire protection. Open. Windows and doors. Chimneys and ventilation channels. Contemporary tendencies in building. Technical documentation.	Student's ability to draw and read architectural plans.	Lectures, exercises, fieldwork, consultations, project.	https://drive.googl e.com/file/d/0B_H n- Zw3UTaudjVZU0N2 QkZPV28/view	09.12.2018
University of Pristina Kosovska Mitrovica Faculty of Technical Sciences Electrical and Computer Engineering	Electroacoustics	Basic features, Sound waves propagation. Sound propagation phenomena, sound sources and obstacles in sound propagation. Analogies between acoustic, electrical and mechanical systems. Room acoustics (definition of wave mode, reverberation time, absorption, wave energy in the room). Physiological acoustics (vocal tract, ear as sound wave receivers, subjective measurements of the sound and their properties). Microphones (types, characteristics, properties). Speakers (types, characteristics, features). Headphones, stereophonic transmission. Quantization of audio signals. Jitter. Alliasing. Theoretical and real audio signals dynamics. A/D and D/A converters of audio signals. Oversampling. Noise colouring. Digital filters. Channel codes. Reduction and compression of data flow. Multichannel systems for audio compression in transmission and storage. Data transmission protection. Optical and magnetic-optical sound recording. CD, MOD, DVD. Computer as a device for recording and generating sound signals.	A student will be able to model acoustic systems for recording, processing and reproduction of sound phenomena in different sound conditions on its own, as well as to analytically examine electroacoustic devices.	Lectures, auditory exercises, laboratory exercises, consultations, homework assignments and written exam.	https://drive.googl e.com/file/d/0B_H n- Zw3UTaudGdHQ3B rdmxmSVU/view	09.12.2018

Professional codes for connecting			
devices. Digital audio mixer tables.			
Sound system design for rooms,			
churches, halls, theaters, cinemas,			
squares and stadiums. Characteristics of			
noise and vibration. Psychoacoustic			
noise criteria. Vibration and impact			
characteristics. Measuring vibration and			
shock. Measuring instruments.			
Numerical exercises describing free			
space acoustic phenomena and			
modeling acoustics point source in			
MATLAB. Numerical exercises describing			
the absorption and reflection of sound,			
as well as the image model of multiple			
source models. Modeling acoustic			
systems using analogies between			
acoustic electrical and mechanical			
systems. Modeling of sound propagation			
in enclosed space. Subjective and			
objective measurer of sound level in			
acoustic systems. Modeling of acoustic			
systems with microphones. Modeling of			
acoustic systems with speakers.			
Headphones and stereophonic			
transmission. Speech and audio signal			
compression. Sound system design of			
rooms, churches, halls, theaters, cinemas,			
squares and stadiums. Noise and			
vibration characteristics.			

University of Pristanta Kosovska Mikrovica Kosovska Mikrovica Protection Systems in Mining Contemporary principles for the implementation of occupational staffs occupational diseases. Training for identifying and assessing cocupational diseases. Training for decay between the occupational diseases. Training for decay between the occupational staffs Combined ex- excon/life/d/08_H https://drive.googl e.com/life/d/08_H 09.12.2018 Environmental Engineering and Occupational Sofety Environmentol is control. Upifying in the mines. Personal protective agents and their application. Technical discontrol. Upifying in the mines. Personal protection in surface exploitation. Technical protection in underground exploitation. Dynamic phenomena in mines. Technical measures for protection in surface surveying. Hazards and fire protection measures. Exploitation is control. Upifying in the measures. Training for measures. Suffit e concentration of measures. Suffit e concentration of again the concentration of exploitation, procedures for provention for assutting the concen		Ducto all'		Tradiciones for the state of the	Constant		00.10.0010
Faculty of Technical Sciences Mining and health. Injuries at work and occupational diseases. Bacis sources to absession in mining and technical protection measures. Gases Bacis cources tobsession in mining and technical protection measures. Gases in the mining environment. Noise and vibration. Mines climate end its control. Lighting in the mining. Personal protective agents and protection in underground exploitation. Dynamic phenomeno in mines. Technical measures for protection measures. Exploitation. Aerospace surveying, Haarads and tife protection measures. Exploitation and approtection measures. Exploitation and tife protection measures. Italing for assessing the concentration of granting protection measures. Italing for assessing the concentration of granting protection measures. Italing for assessing the concentration of measures. Italing for assessing the concentration of minered. Methods and instruments for measuring the concentration of minered tast and vibration in working environment. Methods and instruments for measuring the concentration of minered tast and vibration in working environments. Fire extinguishers and fre extinguishers. Suffering to protect the respiratory organs. Methods of early detection a endogenous fires. Methods of early detection a endogenous fires. Methods of early detection a endogenous fires. Methods of early detection and proceedures for preventing the formation and spreation. now tife earling the and the attration the asploar in the mining coreaction and protection in working environmen	-						09.12.2018
Faculty of Technical Sciences occupational diseases, Basic sources of obsession in mining and technical protection measures, Gases in the mining atmosphere. Minerai dust in surface exploitation. Technical measures of measures. Explosions in the mines. Law regulation. Mamer of keeping records and statistics of miniers and portable instruments for measuring the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for measuring the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for measuring the condition on the climate factors of the working environments. Fire extinguishers and fire extinguishers. Suffering to protect the restingtory organs. Methods of early detection and spreading of ergivation in warking environments. Fire extinguishers and fire extinguishers. Suffering to protect the restingtory organs. Methods of early detection and spreading of ergivation and procedures for preventing the formation and spreading of ergivations in mines. preservation of systems of excination and processing of mineral protection in processing of mineral protection in processing of mineral processing of mineral processing of mineral processing of mineral processing of mineral processing of mineral processing of mineral	Kosovska Mitrovica			-			
Sciences obsession in mining and technical protection measures. Gases in the mining atmosphere. Mineral dust in the mining environment. Noise and vioration. Mines climate and its control. Lighting in the mines. Personal protective agents and their application. Technical measures of protection in underground exploitation. Dynamic phenomena in mines. Technical measures for protection in surface exploitation. Aerospace surveying. Hazards and fire protection in measures. Explosions in the mines. Rescue service in mines. Law regulation. Manner of keeping reacts and statistics of injuries and occupational diseases. Laboratory and protect the respiratory measures for measuring noise and vibration in working environment. Methods and instruments for measuring noise and vibration in working environment. Sife extinguishers and fire protection of grotection measures. Training for measures. Training for the working environment. Methods and instruments for assuring noise and vibration in working environments. Fire extinguishers and fire application measures. Suffering to protect the respiratory organs. Methods and instruments for measuring the concentration of the climate factors of the working environment. Methods and instruments for respiratory organs. Methods or protect the respiratory organs. Methods or protect the respiratory organs. Methods or protect the respiratory organs. Methods organizing to childion, protection in working environments. Fire extinguishers and fire appleasions in mineral systems of endagenous fires. Methods and procedures for preventing the formation and spreading of early detection of endagenous fires. Methods and procedures for preventing the formation and spreading of early detection of endagenous fires. Methods and procedures for preventing the formation and spreading of early detection of endagenous fires. Methods and procedures for preventing the formation and spreading of early detection of endagenous fires. Methods and procedure of preventing th		Mining					
Environmental Engineering and Occupational Safety protection measures, Gases in the mining atmosphere, Mineral dust in the mining environment. Noise and vibration. Mines climate and its control. Lighting in the mines, Personal protective agents and their application. Technical measures of protection in underground exploitation. teaching with. IT support. Image and their application. Safety admosphere, Mineral dust in the mining environment. Noise and vibration. Mines climate and its control. Lighting in the molecures. Ability to measures. Ability to measures. Straining for accupation of surveying. Hazards and file protection measures. Exploitation. Aerospace surveying. Hazards and file protection measures. Exploitation. Aerospace of injuries and occupational diseases. of injuries and occupational diseases. of injuries and occupational diseases. Methods and instruments for measuring the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for measuring noise and instruments for protection in explored on othe climate factors of the working environment. Fire extinguishers and fire extinguishers. Suffering to protect the respiratory organs. Methods of and miners. protection in protection in explored protection end organizing technical protection in mered and spreading of explosions in mines.					•		
Environmental Engineering and Occupational Safety Cilinate and its control. Lighting in the mines. Personal protective agents and their application. Icehnical measures of protection in underground exploitation. Dynamic phenomena in mines. Technical measures for protection in surface exploitation. Aerospace surveying. Hazards and fire protection measures. Explosions in the mines. Rescue service in mines. Laboratory and portable instruments for measuring the concentration of gases. Methods and instruments for measuring noise and vibration in working environment. Kellity the condition of the climate factors of the working environment. Kellity the condition of the climate factors of the working environment. Kellity the condition of the climate factors of the working environment. Kellity the condition of the climate factors of the working environment. Kellity the condition of the climate factors of the working environment. Kellity the condition of the climate factors of the working environment. Kellity the condition of the climate factors of the working environments. Fire exlinguishers and fire exlinguishers. Suffering to protect the respiratory organs. Methods of early detection of endogenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines.	Sciences					pwrvbavk/view	
Environmental Engineering and Occupational Safety environment. Noise and vibration. Mines climate and its control. Lighting in the mines. Personal protective agents and their application. Technical measures of protection in underground exploitation. Dynamic phenomena in mines. Technical measures for protection in surveying. Hazards and fire protection in measures. Explosions in the mines. Rescue service in mines. Law regulation. Manner of keeping records and statistics of injuries and occupational diseases. Laboratory and portable instruments for measuring the concentration of gases. Methods and instruments for assessing the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for assessing the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for assessing the concentration of measuring the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for assessing the concentration of measuring noise and vibration in working environment. Fire exlinguishers and fire exlinguishers. Suffering to protect the respiratory organs. Methods or do eary detection or endagenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines. measuring and concentration of measures. Training for measures. Training for the working environment. Fire exlinguishers of endagenous fires. Methods and procestive devices.					-		
Engineering and Occupational Safety environment. Noise and vioration. Mines climate and its comtrol. Lighting in the mines. Personal protective agents and their application. Technical measures of protection in underground exploitation. measures and planning protection of measures. Ability to measures. Ability to measures. Exploitation. Aerospace surveying. Hazards and fire protection in measures. Exploisons in the mines. measures. Ability to measure Rescue service in mines. Rescue service in mines. Law regulation. Mamer of keeping records and statistics of injuries and occupational diseases. Laboratory and portable instruments for measuring the concentration of fames resisting the concentration of the working environment. Methods and instruments for measuring the condition of the climate factors of the working environment. Methods and vibration in working environments. Suffering to protect tion erespiratory organs. Methods of early detection of endogenous fires. Methods and procedures for protection of measures. Training for the condition of the climate factors of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Kethods and vibration in working environments. Suffering to protect the respiratory organs. Methods of early detection of endogenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines. organizing technical protection and prozedures for preventing the formation row materials.	Environmental				support.		
Occupational Sofety Clinicle dials control to gains and their application. Technical measures of protection in underground exploitation. Dynamic phenomena in mines. Concentration of gases and planning of protection measures. Ability to measures. Ability to measures. Ability to measures. Explosions in the mines. Surveying, Hazards and fire protection measures. Explosions in the mines. concentration of measures. Explosions in the mines. Rescue service in mines. Law regulation. measures. Training for measures. Explosions in the mines. Manner of keeping records and statistics of injuries and occupational diseases. of the work environment. Ability to measures. Training for measures. Training for measures. Training for the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for the working environment. Wethods and instruments for measuring the condition of the climate factors and instruments for measuring noise and vibration in working environment. Kowledge of the protection in technological systems of exploitation, protection of endogenous fires. Methods and procedures for preventing the form and spreading of explosion in mines.				9			
the integration of the concentration of generations of protection in underground exploitation. Dynamic phenomena in mines. Technical measures for protection in surface exploitation. Aerospace surveying. Hazards and fire protection measures. Explosions in the mines. Rescue service in mines. Law regulation. Manner of keeping records and statistics of injuries and occupational diseases. Laboratory and partable instruments for measuring the concentration of gases. Methods and instruments for measuring the condition of the working environment. Methods and instruments for assessing the condition of the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers. Suffering to protect the respiratory organs. Methods of early detection of endogenous fires. Methods and and spreading of explosions in mines.			5 5				
Image: Section in underground exploitation. Dynamic phenomena in mines. Technical measures for protection in surface exploitation. Aerospace surveyine. Hazards and fire protection measures. Explosions in the mines. measures. Training for acsessing the climate of injuries and occupational diseases. Laboratory and portable instruments for measures for measures for measures for measures for with the concentration of mineral dust in the admising protection and instruments. Fire extinguishers and fire extinguishers.measures. Ability to measure concentration of planning protection measures. Training for acsessing the climate of the workImage: Concentration of pases. Methods and instruments for measuring the concentration of mineral dust in the unsophere of the working environment. Methods and instruments for measuring protection the concentration of the climate factors of the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers. Suffering to protect the respiratory systems of exploration, and protection in recention of the corking only organizing technical vibration in working environments. Fire extinguishers and fire extinguishers.measures. Fraining for measures. Training for measures. Training for measures. Training for the use of respiratory protective devices.Image: Concentration of the climate factors of the working environments. Fire extinguishers and fire extinguishers.organizing technical organizing technical protection in technologicalImage: Concentration of the center of the exploration on vibration in working environments. Fire extinguishers and fire extinguishers.organizing technical protection in technological<	,			•			
Dynamic phenomena in mines. Technical measures for protection in surface exploitation. Aerospace surveying. Hazards and fire protection measures. Explosions in the mines. Rescue service in mines. Law regulation. Manner of keeping records and statistics of injuries and occupational diseases. Laboratory and portable instruments for measures for measuring the concentration of gases. Methods and instruments for measuring the concentration of gases. Methods and instruments for active devices. Ketworking environment. Methods and instruments for accord file of the working environment. Methods and instruments for accord file of the working environment. Methods and instruments for aesuring the concentration of the climate factors of the working environments. File virotation in working environments. Suffering to protect the respiratory systems of suffering to protect the respiratory systems of exclusional disease and procection in reparation of measuring the concentration of procedures for preventing the formation systems of systems of exploitation, preparation, precessing of precessing of mineral devices.measure accord and processing of mineral protection processing of mineral protection in the working environment.Methods and instruments for assessing the condition of the climate factors of instruments for measuring noise and organs. Methods of adrigo dextipotes on direct the respiratory organs. Methods ond procedures for preventing the formation processing of mineral processing of miner							
Technical measures for protection in surface exploitation. Aerospaceconcentration of mineral dust and planning protection measures. Explosions in the mines.Manner of keeping records and statisticsof the work of injuries and occupational diseases. Laboratory and portable instruments for measuring the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Fire protection in working environments. Fire extinguishers and fire extinguishers and procedures for preventing the formation procedures for preventing the formation procedures for preventing the formation and spreading of explosions in mines.concentration of measures. Training for to measure noise and wibration and planning protection the use of respiratory protective devices.Methods and instruments for assessing the condition of the climate factors of the working environment. Fire extinguishers and fire extinguishers.protection in measures. Training for the use of respiratory protection in the use of respiratory protection inSuffering to protect the respiratory organs. Methods and and spreading of explosions in mines.concentration of exploitation, procedures for preventing the formation organs in mines.							
surface exploitation. Aerospacemineral dust andsurveying. Hazards and fire protectionplanning protectionmeasures. Explosions in the mines.assessing the climateRescue service in mines. Law regulation.assessing the climateManner of keeping records and statisticsof the workof injuries and occupational disease.of the workof injuries and occupational disease.of the workwethods and instruments for measuringplanning protectionmetasuring the concentration of gases.planning protectionMethods and instruments for measuringplanning protectionthe concentration of the climate factors ofthe use of respiratorymothods and instruments for measuring noise andprinciples ofinstruments for measuring noise andorganizing technicalvibration in working environment. Fireprinciples ofsuffering to protect tion of are extinguisherssystems ofextinguishers and fire extinguishersexploitation,prodection of areasing organs. Methods andprotection intechnologicalsystems ofsuffering to protect the respiratorysystems oforgans. Methods of early detection ofexploitation,procedures for preventing the formationprocessing of mineraland spreading of explosions in mines.processing of mineraland spreading of			, ,				
surveying. Hazards and fire protection measures. Explosions in the mines. Rescue service in mines. Law regulation. Manner of keeping records and statistics of injuries and occupational diseases. Laboratory and portable instruments for measuring the concentration of gases. Methods and instruments for measuring the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers and fire explosions in the use of respiratory organs. Methods of early detection of endogenous fires. Methods and procedures for preventing the formation organizing technical protection and procedures for preventing the formation organizing technical procedures for preventing the formation and spreading of explosions in times.planning protection measures. Training for measures.							
measures. Explosions in the mines. Rescue service in mines. Law regulation. Manner of keeping records and statistics of injuries and occupational diseases. Laboratory and portable instruments for measuring the concentration of gases. Methods and instruments for measures. Training for to measure noise and vibration and planning protection measures. Training for to measure noise and vibration and planning protection measures. Training for to measure noise and vibration and planning protection measures. Training for to measure. Training for the vork environment. Methods and instruments for assessing the concentration of the climate factors of the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers. Suffering to protect the respiratory organs. Methods of early detection of endogenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines.measures. Training for assessing the climate for measures. Training for the use of respiratory profective devices. Knowledge of the principles of organizing technical protection in technological systems of exploitation, preparation and processing of mineral processing of mineral processing of mineral processing of mineral raw materials.							
Rescue service in mines. Law regulation. Manner of keeping records and statistics of injuries and occupational diseases. Laboratory and portable instruments for measuring the concentration of gases. Methods and instruments for measuring the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environments. Fire extinguishers and fire extinguishers. Suffering to protect the respiratory organs. Methods of early detection of endogenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines.assessing the climate of the work envionment. Ability to measure noise and vibration and procedures for preventing the formation							
Manner of keeping records and statistics of injuries and occupational diseases. Laboratory and portable instruments for measuring the concentration of gases. Methods and instruments for measuring the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for measuring noise and organizing technical principles of organs. Methods and fire extinguishers. Suffering to protect the respiratory organs. Methods and procedures for preventing the formation organizing the condition of processing of mineral processing of mineral							
of injuries and occupational diseases. Laboratory and portable instruments for measuring the concentration of gases. Methods and instruments for measuring the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers.environment. to measure noise and vibration and measures. Training for the use of respiratory protective devices.Wethods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers.protective devices. Knowledge of the protection in technologicalSuffering to protect the respiratory organs. Methods and procedures for preventing the formation and spreading of explosions in mines.processing of mineral arw materials.							
Laboratory and portable instruments for measuring the concentration of gases. Methods and instruments for measuring the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers. Suffering to protect the respiratory organs. Methods of early detection of endogenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines.							
measuring the concentration of gases. Methods and instruments for measuring the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers. Suffering to protect the respiratory organs. Methods and procedures for preventing the formation and spreading of explosions in mines.vibration and planning protection measures. Training for the use of respiratory protective devices. Knowledge of the principles of organizing technical protection in technological systems of exploitation, processing of mineral and spreading of explosions in mines.vibration and protective devices. Knowledge of the principles of organizing technical protection in exploitation, processing of mineral raw materials.							
Methods and instruments for measuring the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers. Suffering to protect the respiratory organs. Methods of early detection of endogenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines.planning protection measures. Training for the use of respiratory protective devices. Knowledge of the principles of organizing technical protection in exploitation, protection in exploitation, processing of mineral raw materials.planning protection measures. Training for the use of respiratory protective devices. Knowledge of the principles of organizing technical protection in exploitation, processing of mineral raw materials.							
the concentration of mineral dust in the atmosphere of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers.measures. Training for the use of respiratory protective devices. Knowledge of the principles of organizing technical protection in technologicalSuffering to protect the respiratory organs. Methods of early detection of endogenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines.measures. Training for the use of respiratory protective devices. Knowledge of the principles of organizing technical protection in technological							
atmosphere of the working environment. Methods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers.the use of respiratory protective devices. Knowledge of the principles of organizing technical protection in technological systems of exploitation, propreduces for preventing the formation and spreading of explosions in mines.the use of respiratory protective devices. Knowledge of the principles of organizing technical protection in technological systems of exploitation, preparation and processing of mineral raw materials.			•				
Methods and instruments for assessing the condition of the climate factors of the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers. Suffering to protect the respiratory organs. Methods of early detection of endogenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines. Methods and instruments for assessing protective devices. Knowledge of the principles of organizing technical protection in technological systems of preparation and processing of mineral raw materials.							
the condition of the climate factors of the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers.Knowledge of the principles of organizing technical protection in technological systems of exploitation, preparation and procedures for preventing the formation and spreading of explosions in mines.Knowledge of the principles of organizing technical organizing technical protection in exploitation, processing of mineral raw materials.							
the working environment. Methods and instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers.principles of 			5				
instruments for measuring noise and vibration in working environments. Fire extinguishers and fire extinguishers. Suffering to protect the respiratory organs. Methods of early detection of endogenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines.							
vibration in working environments. Fire extinguishers and fire extinguishers. Suffering to protect the respiratory organs. Methods of early detection of endogenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines. procedures for preventing the formation and spreading of explosions in mines.							
extinguishers and fire extinguishers.technologicalSuffering to protect the respiratorysystems oforgans. Methods of early detection ofexploitation,endogenous fires. Methods andpreparation andprocedures for preventing the formationprocessing of mineraland spreading of explosions in mines.raw materials.				u			
Suffering to protect the respiratory organs. Methods of early detection of endogenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines.systems of exploitation, preparation and processing of mineral raw materials.							
organs. Methods of early detection of endogenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines.				0			
endogenous fires. Methods and procedures for preventing the formation and spreading of explosions in mines.preparation and processing of mineral raw materials.							
procedures for preventing the formation and spreading of explosions in mines.							
and spreading of explosions in mines. raw materials.							
I Plan for defense and rescue in mine				raw materials.			
			-				
mines.			mines.				

University of Pristina	Noise and	Basic principles of vibration isolation	Knowing the legal	https://drive.googl	09.12.2018
Kosovska Mitrovica	Vibrations	Vibration absorption Vibration isolation	regulations related to	e.com/file/d/0B_H	07.112.2010
		Elements and materials for vibration	measurement and	n-	
Faculty of Technical		absorption and vibration isolation	evaluation of noise	Zw3UTauaW93NTB	
Sciences		Vibration isolation system calculation	and vibration.	pWFVBdVk/view	
sciences		Machine vibration monitoring diagnostics	Training for noise		
		Diagnostic tools FFT, CPB, Kepstrum,	measurement,		
Environmental		Envelop, Order analysis Conclusion on	interpretation in the		
Engineering and		the condition of certain machine parts	processing of results.		
Occupational Safety		and machines as a whole Assessment of	Ability to plan		
		the state of vibrations Allowed values	measures against		
		Application of personal protective	excessive noise. Skills		
		devices Wave equation - forms and	for vibration		
		solutions Wave types - flat, spherical and	measurement,		
		cylindrical State of noise levels in the	interpretation and		
		working environment Noise sources and	processing of results.		
		their characteristics Models for the	Ability to plan		
		forecast of noise indoors, model	vibration protection		
		structure, noise control, basic principles,	measures.		
		sound absorption and sound insulation,			
		noise control elements and materials,			
		noise source control, source leakage,			
		control of transmission paths, screen			
		display, on-site inspection, application of			
		personal protective equipment			
		Measurement and analysis noise and			
		vibration. Choice of parameters for			
		analysis. Frequency analysis. Types of			
		frequency analysis. FFT analysis. Clarified			
		analysis. Octane and tertiary analysis.			
		Frequency analysis methods. Correlation			
		analysis. Kepstrum and order analysis.			
		Distribution of signals by time and			
		frequency character. Measuring			
		instruments. Types and types of			
		instruments. Basic measuring chain.			
		Converters - condenser microphones			
		and accelerometers: principle of			
		operation, choice of f.625 0 types and			

		sizes. Setting the accelerometer. Detector signal. Calibration of measuring system. The impact of the environment on the measurement. Shittiners. Standards and Regulations. European directives. Basic elements of the measuring procedure: selection of measuring point, measuring interval, measuring parameter, measuring chain. Processing results. Procedures and standards for determination of sound power of sources and sound insulation of partition structures. Procedures and standards for measuring NA and WB vibrations. Legislation related to measurement and evaluation of noise and vibration. Measurement procedures, selection of measuring points, interpretation and processing of results, preparation of reports. Practical noise measurement. Noise management - measures and procedures for its limitation: barriers, personal protective equipment. Vibration Measurement Procedures, Selection of measuring Points, Interpretation and processing of Results to Reports. Practical vibration measurements. Measures and procedures for limiting vibrations, constructive measures, personal protective equipment.				
University of Pristina	Occupational	Vibrations as a physical phenomenon.	Knowing the physical	Lectures,	https://drive.googl	09.12.2018
Kosovska Mitrovica	Noise and Vibrations	Consequences of vibration effects. Application of personal protective	principles of vibration and noise	exercises and consultations.	e.com/file/d/0B_H n-	07.12.2010
Faculty of Technical Sciences	Protection	equipment. Measuring vibration of equipment for work. Instrumentation for vibration measurement. Basic principles of vibration isolation. Protection against vibration and equipment for work.	generation. Skills: measurement of noise levels in the work environment and vibration of		Zw3UTauaW93NTB pWFVBdVk/view	

Environmental Engineering and Occupational Safety		Vibration protection in motor vehicles. Human body vibration and vibration transmission over hands and arms. Noise as a physical phenomenon. Effects of noise. Application of personal protective equipment. Measurement and Noise Analysis Methods in the workplace. Noise measurement instrumentation. Measure and analyze the soundness of equipment for work. Measurement of the noise of motor vehicles. Reducing the risk of noise and vibration. Noise protection in motor vehicles.	equipment for work. Diagnostic purposes. Application of methods for controlling noise and vibration.			
University of Pristina Kosovska Mitrovica Faculty of Technical Sciences Mechanical Engineering	Vehicle Dynamics	An extract from car history Introduction to vehicle dynamics. Basic concepts from statics. The forces and moments that affect the vehicle. Degrees of freedom and vehicle oscillations. Oscillatory vehicle model. Oscillations of motor vehicles - theoretical basis. Free unshifted oscillations with one degree of freedom. Forced silenced oscillations with one degree of freedom. Vertical reaction. Initiation of uneven substrate. Harmonious initiative. Periodicals initiative. Stochastic Initiative. Characteristics and analysis of oscillatory quantities. Calculation of oscillatory characteristics. Oscillatory characteristics of the vehicle. Deformation of elastic elements. Axial pressure. Vertical oscillations with two degrees of freedom. Influence of oscillations on man. Reflection and observations. Evaluation of the oscillation of the oscillation effect. Recommendations. Time of exposure to oscillations. Management and	The student's ability to routinely use acquired knowledge and skills in vehicle dynamics, and to look at their place in team work and to improve themselves.	Lectures, exercises and consultations.	https://drive.googl e.com/file/d/0B_H n- Zw3UTauUE50OUJn b2FFMjg/view	10/12/2018

manageability. Turning at low speed.
Turning at high speed. Equations of
turning. Gradient of disposability.
Characteristic speed.
Increase of lateral acceleration. Increase
in turning speed. Side skating angle.
Static reserve. Braking of motoric
vehicles. Basics. Work and braking
power. Brake wheel. Gripping and
slipping. Braking stability. Maximum
braking performance. Real braking
characteristics. Distribution of braking
forces. Modern electronic systems for
controlling the dynamic behavior of
vehicles. Theory of impact and collision
of a vehicle. Basic equations of shock
theory. General laws of the theory of
impact. Punching the body into a
stationary obstacle. Proper central
collision of two bodies. Loss of kinetic
energy in a plastic collision - Karno's
theorem. A hit on the body that turns.
Non-centralized collision of a vehicle in
straight motion. Collision modeling.

University of Pristina Kosovska Mitrovica Faculty of Technical Sciences Mechanical Engineering	Oscillation Theories	Small oscillations of a single oscillation system. Simple harmonic oscillation. Harmonic oscillator. Riley's method of energy. Reducing the mass and stiffness of the springs. Equivalent models. Curved-path harmony oscillation. Mathematical pendulum. Cycloid pendulum. Physical pendulum. Roller pendulum. Torsion oscillator. Oscillations with friction. Resistance proportional to the first degree of speed. Decaying oscillatory motion. Aperiodic movement. The function of dissipation. Free forced oscillation with resistive force. Complex forced oscillations. The case of periodic disturbance. The case of arbitrary disturbance. Small oscillations of systems with multiple degrees of oscillation. Small	Mastering basic concepts and methods of linear theory of oscillations of mechanical systems with arbitrary finite number of degrees of freedom and elastic bodies with one-dimensional mass distribution, using appropriate computer tools.	Lectures, exercises and consultations.	https://drive.googl e.com/file/d/0B_H n- Zw3UTauUE50OUJn b2FFMjg/view	10.12.2018
		Mathematical pendulum. Cycloid pendulum. Physical pendulum. Roller pendulum. Torsion oscillator. Oscillations with friction. Resistance proportional to the first degree of speed. Decaying oscillatory motion. Aperiodic movement. The function of dissipation. Free forced oscillation without resistance. Free forced oscillation with resistive force. Complex forced oscillations. The case of periodic disturbance. The case of arbitrary disturbance. Small oscillations of systems with multiple degrees of oscillation. Small oscillations of the holonomic conservative system. Differential equations. Characteristics of inertial and quasielastic coefficients. Frequency	finite number of degrees of freedom and elastic bodies with one-dimensional mass distribution, using appropriate			
		equation. Orthogonality of major oscillations. Main and normal coordinates. Forced oscillations. Dynamic absrorbers. Linear oscillations of a system with several degrees of freedom. Non-homogeneous chains. Homogeneous chains. Trigonometric method. Small torsional oscillations of light shafts with multiple disks. Reducers. Small transverse oscillations of elastic beams with more concentrated masses. Approximate methods for determining natural circular frequencies of oscillatory systems. Dankerle's method. Morley's method. A complex pendulum. Oscillations of the vehicle. Small				F1

		oscillations of a non-conservative system. Characteristic equation of small oscillations of a non-conservative system. Stability of motion. Lieutenant DiRichle's theorem. Stability and instability of oscillatory systems. Hurricht criterion stability. Oscillations of elastic bodies. Wave equation. Transverse oscillations of the wire. Bernoulli's method of particular integrals. Longitudinal oscillations of prismatic beams. Torsional oscillations of circular shafts. Free transverse oscillations of single beam beams.				
University of Pristina Kosovska Mitrovica Faculty of Technical Sciences Mining engineering	Technical Protection	Contemporary principles for the implementation of occupational safety and health. Injuries at work and occupational diseases. Basic sources of obsession in mining and technical protection measures. Gases in the mining atmosphere. Mineral dust in the mining environment. Noise and vibration. Mine's climate and its control. Lighting in the mines. Lightning protection of assets and their application. Technical measures of protection in underground exploitation. Dynamic phenomena in mines. Technical measures for protection against surface exploitation. Aero pollution from surface mining. Hazards and fire protection measures. Explosions in the mines. The rescue service in the mines.	Ability for identifying and assessing hazards. Ability to record and analyze injuries and occupational diseases. Training for measuring and concentration of gases and planning of protection measures. Capability to measure the concentration of mineral dust and protection measures. Training for the use of respiratory protective devices. Knowledge of the pricipation of technical protection in technological systems of	Combined ex- chatedra lectures with multimedia presentation and interactive teaching with IT support.	https://drive.googl e.com/file/d/0B_H n- Zw3UTaubnhENWJ Cem8xeDQ/view	10.12.2018

			exploitation, preparation and processing of mineral raw materials.				
University of Pristina Kosovska Mitrovica Faculty of Technical Sciences Mining engineering	Principles of Ecological Engineering	Through this course, students will be introduced to the basic concepts and principles of ecology, with the concepts of environmental protection and ecological factors, their classification, then geoetics, forms of pollution and environmental protection in general. Basic principles of ecological engineering, business design. Planet Earth - global environmental problems. Pollution and protection of soil, creation, characteristics, manner and types of pollution. Pollution and water protection. Natural pollution, pollution of surface, groundwater, industrial waters. Pollution and air protection. Air pollutants with production activities, combustion of fossil fuels, sources and classification. Radioactive contamination and protection. Noise and Noise Protection. Monitoring, models of transport of pollution. Municipal solid waste management: collecting, sorting recycling. Hazardous medical waste. Utility solid waste depot. Industrial waste management Legal regulations in the field of environmental protection. National regulations. EU Directive. Education in the field of environmental protection. Local environmental action plans. The role of NGOs.	Students who successfully pass the exam will have an ecological way of thinking, which will thus become the basis for later behavior and attitudes towards the environment and nature as a whole. The student will be able to critically reflect on existing problems in the context of an engineering approach to nature conservation from the aspect of environmental protection.	Lectures, beam, exercises	video DVD,	https://drive.googl e.com/file/d/0B_H n- Zw3UTaubnhENWJ Cem8xeDQ/view	10.12.2018

University of Novi	Electroacoustics	The notion of sound. Creation of sounds.	Students should	Lectures,	http://www.np.ac.	27.11.2018.
Pazar		Sound propagation. Spherical and plane	master the basics of	Laboratory work,	<u>rs/</u>	
		waves. Velocity of propagation and	acoustics and	Seminar.		
Department of		particle velocity. Sound pressure. Sound	electroacoustic		http://www.np.ac.	
Technical Sciences		intensity in a free field. Sound power.	transducers.		<u>rs/downloads/knjig</u>	
		Simple and complex sound.	Students would be		<u>e predmeta/eng/</u>	
Audio and video		Accumulation of sound intensity in a free	better able to solve		avt coursebook.p	
technologies		field. Accumulation of sound pressure.	independently basic		df	
j		The definition of decibel. Adding	problems in the field			
		decibels. Decibel calculation (intensity	of physics, spatial			
		and pressure). Attenuation of a sound	and physiological			
		pressure level depending on the	acoustics and			
		distance. The role of the attenuation	acquire required			
		coefficient. Diffraction and refraction of	background			
		sound waves. The absorption and	knowledge.			
		reflection coefficient. Spatial acoustics.				
		Room absorption. Reverberation time.				
		Absorbing materials and structures.				
		Artificial reverberation. Room acoustics.				
		Mechanical and acoustic resonators.				
		Porous materials. Physiological acoustics.				
		Basic parameters. Pitch, intensity and				
		quality of a sound. Melody, rhythm and				
		dynamics. The hearing part of the ear. Isophon curves. Phones, sones. Voice				
		characteristics. Vowels and consonants.				
		Speech comprehensibility. Formants.				
		Comprehension criteria. Factors				
		influencing comprehensibility. Noise and				
		its acoustic properties. A, B, C features of				
		photometers.				
		Electroacoustic transducers.				
		Microphones. Properties of a speaker.				
		Structure and characteristics of an				
		electrodynamic loudspeaker.				
		Headphones. Acoustic field in a room.				
		Determining sound pressure in different				
		parts of a room. The threshold of				
		audibility. Determining isophon curves				
L			1	I	1	Г. Г.Л

using headphones. Determining isophon		
curves using a speaker. Measuring the		
reverberation time – by means of Sabine		
equation. Measuring the reverberation		
time – by means of Eyring formula.		
Binaural-beat perception.		

APPENDIX II

SURVEY OF THE EDUCATION OF SELECTED UNDERGRADUATE ENGINEERING PROGRAMMES IN SERBIA AT PRIVATE UNIVERSITIES: COURSES RELATED TO THE NO&VIB FIELDS

University Faculty Study program	Course	Course content	Educational outcomes/ Purpose	Teaching methods	Reference	Date
University 'Union- Nikola Tesla' Belgrade Faculty of Civil Engineering	Contemporary Design Methods	Continuous systems. Free, unbroken oscillations of the beam. Determination of own frequencies and their own beam shapes. Orthogonality and its forms. Modular weight of the beam. The forced, damped oscillations of the beam. Bending thin sheets. Free, unbroken oscillations of the panel	Acquiring knowledge about oscillations of continuous systems. Training of students for independent implementation of the calculation and verification of the usability of	Lectures, Practice/ Practical classes, Consultation, study	https://www.f pb.edu.rs/gra djevina	21. 12.2018.
Department of General Construction		unbroken oscillations of the panel. Determining your own frequencies and your own shapes. Modular weight of plate. The forced and damped oscillations of rectangular panels which are freely supported on all four angles. Design of constructions according to vibrations. Vibration source (groundborne vibration, vibrating machinery, human-induced excitation). The vibration transmission path (construction object). Vibrator	construction structures according to vibrations. Knowledge and ability to apply different legal regulations.			

receiver (man, machine, process, etc.).		
Vibrations of pedestrian bridges.		
Analytical models of a dynamic force		
bridge that originates from the people		
movement. Existing regulations (BS5400,		
BD37 / 01). Synchronous Lateral		
excitation. Vibration of intercity		
constructions. Analytical models of the		
board loaded with the force of		
walking. Presentation and application		
of regulations (CSTR43 Appendix G). An		
example of a calculation for the		
response of a real interconnected		
structure according to current		
regulations. Vibrations of the stadium.		
Presentation and application of		
regulations (IStructE / DTLR / DCMS).		
Restriction of own frequencies. An		
example of a calculation and analysis		
of the stadium construction response.		
Practical exams: Solving tasks and		
examples from practice.		

APPENDIX III

SURVEY OF THREE SELECTED UNDERGRADUATE PROGRAMMES IN SOUND AND VIBRATION IN EU

University	Course	Course content	Educational outcomes/ Purpose	Teaching methods	Reference	Date
Study						
program University of Southampton Acoustical Engineering	Acoustics	Sound Perception: 1. Introduction to Acoustics and Sound Perception 2. The human auditory system and the functioning of the component parts 3. Acoustic metrics and their uses for quantifying sound objectively and subjectively Physical Acoustics: 1. Introduction to Waves 2. Sound Waves in Fluids 3. Acoustic Plane Waves 4. Sound propagation, reflection, transmission, refraction and absorption Special Features: Computational approach to physical acoustics: students understand sound waves by writing programmes to animate them.	Ability to: - Identify the parts of the outer, middle and inner ear explaining their role - Describe what governs or affects the hearing of an individual Explain the role of the two ears in distinguishing the direction of an acoustic source. Convert noise levels into dB and linear levels, combining noise sources either coherent or incoherent Be able to convert narrowband data into third and octave band levels either with linear or A weighting Describe the physical principles for simple transducers and explain what governs their frequency response and which type is appropriate for different acoustic applications Explain the meaning of common terms in wave mechanics, such as wavelength, wavenumber, wave speed, diffraction, reflection, dispersion etc. and give examples of how they apply to sound - Relate the speed of sound in a fluid to its physical properties Derive the one- dimensional wave equation for both a stretched string and a fluid-filled pipe and explain the assumptions necessary to do soDemonstrate (by means of a	Lectures; tutorials; acoustic laboratory demonstrations; exercises	https://www.sou thampton.ac.uk /courses/module s/isvr1032.page# aims_and_objec tives	10.01.2019.

			computer programme where appropriate): standing waves, interference fields, and other wave phenomena. Transferable and Generic Skills: Having successfully completed this module you will be able to: - Information handling - Written communication - Numeracy and manipulating data - Being an independent learner Subject Specific Practical Skills: Having successfully completed this module you will be able to: -Carry out calculations relating to acoustic predictions Use a sound level meter and be able to measure sound pressure levels which are calibrated and repeatable, with awareness of the uncertainty and factors that might affect the measurements - Undertake simple acoustic measurements on one dimensional acoustic phenomena Collate experimental data Manipulate experimental data in order to draw specific conclusionsSet up simple acoustical problems in numerical software and interpret the solutions Write computer programs to visualise and interrogate analytic solutions to acoustical problems			
University of Southampton	Mechanics, Structures and	Statics-1 (S1) Fundamental Concepts: Concepts, Units, Scalar	Having successfully completed this module, one will be able to	Lectures, group tutorials and	https://www.sou thampton.ac.uk	10.01.2019.
	Materials	& Vector, Revision of statics	demonstrate knowledge and	laboratory sessions.	/courses/module	
Acoustical		(adding/resolving forces, moments), types of load/support;	understanding of: Statics 1: - The distinction between	sessions.	s/feeg1002.pag e#aims_and_obj	
Engineering		Equilibrium of rigid bodies. Free	internal and external forces and the		ectives	
		body diagrams. Static	difference between statically		0011100	
		determinacy; Trusses: static	determinate structures, statically			
		determinacy, method of joints and	indeterminate ones, and mechanisms			
		method of sections; Stress, strain,	The conditions of equilibrium of			
		elastic constants, Hooke's law;	particles and rigid bodies, and how to			

Bea	ams: shear force and bending	use them to calculate the reactions at		
mo	oment diagrams, differential	the supports of statically-determinate		
rela	ationships; Engineer's Bending	structures How to calculate, and plot		
The	eory. First and second moments	diagrams of, the internal forces and		
of o	area; Beam deflection due to	moments of statically-determinate		
ber	nding, moment-curvature	beams Engineer's Bending Theory		
rela	ationship; Differential equation	and how to use it to determine beam		
of t	the deflection curve. Solution	deflection due to bending How to		
by	integration; Shear stress in	calculate bending-induced shear		
be	ams. Shear formula. Shear stress	stresses and their distribution in a beam.		
dist	tribution in practical sections;	- The behaviour of a structural member		
	rsion of circular section shafts,	in torsion and how to calculate the		
pol	lar second moment of area;	stress in a circular section in torsion		
Buc	ckling of elastic struts. Concept	How to solve statically-determinate		
ofi	instability. Euler formula,	plane trusses How elastic struts buckle		
effe	ective length.	and how to calculate the critical		
Sta	atics-2 (S2); Stress, strain, elastic	buckling load.		
COL	nstants, thermal strain, Hooke's	Statics 2: - Stress and strain in 2D/3D.		
law	v (2D/3D); Stresses in thin-walled	Free edge conditions The way that		
cyli	linders subject to internal	stress and strain transform in 2D The		
pre	essure; Two-dimensional analysis	concept of principle stresses and		
ofs	stress. ; Stress transformation	strains.		
Usir	ng Mohr circles.; Principle	Dynamics 1: Having successfully		
stre	esses and strains	completed Stream 1, you will		
Dyr	namics-1 (D1); Particle	additionally be able to demonstrate		
Dyr	namics: rectilinear and	knowledge and understanding of: - The		
CUI	rvilinear motion; motion of	kinematics and kinetics of particles		
pro	pjectiles; dependent and	The plane kinematics and kinetics of		
rela	ative motion; Newton's Laws;	rigid bodies The work done by forces.		
	e body diagrams; equations of	- The Kinetic/Potential energy and		
	otion.; Work and Energy for	impulse/momentum for particles and		
	rticles: principle of work and	rigid bodies in 2D The conservation of		
	ergy; Energy Conservation;	energy and momentum for particles		
	wer and efficiency; Principle of	and rigid bodies in 2D The motion of		
	ear/angular impulse and	systems with variable mass The		
	omentum for particles; Equations	fundamental concepts of rigid body		
	motion for systems with variable	dynamics in 3D.		
	ass; Rigid bodies Dynamics in 2D:	Dynamics 2: Having successfully		
	ematics relationships, centre of	completed Stream-2, you will		
-	ass, mass moment of inertia and	additionally be able to demonstrate		
equ	uations of motion,; Work and	knowledge and understanding of: -		

energy principle for rigid badies: Principle of linear/orguinautions of and momentum for rigid badies: Introduction to rigid badies motion in 3D Dynamics-2 (D2): Particle Dynamics-2 (D2): Particle particles and rigid badies in 2D) and curvilinear motion; Newton's Laws: free bady diagrams: equations of motion; Work and Energy for particles: principle of work and energy: Energy Conservation. : Principle of linear impulse and momentum for particles: Rigid badies Dynamics: 12D: International diagrams: equations of motion; Work and energy principle for rigid badies; The fundamental concepts of plane curvilinear motion; Newton's Laws: relationships. centre of mass, mass moment of inergi and equations of motion; Work and energy principle for rigid badies; The fundamental assumptions of lumped parameter mechanical equivalent mass, stiffness and domping; Steady stafe forced wibration analysis of a single degree of freedom mechanical system with examples from civil and mechanical engineering: Steady stafe torbardies from civil and m	Contraction of the second seco				
and momentum for rigid bodies: Introduction to rigid bodies motion in 3DThe fundamental concepts of plane kinematics and kinefics of rigid bodies. The Kinetic/Potential energy (for particles: rectilinear and conservation of energy (for particles). The fundamental conservation of energy (for particles). The fundamental assumptions of lumped parameter momentum for particles). The fundamental assumptions of lumped parameter momentum for particles. The fundamental assumptions of lumped parameter representation of anergy free body states forced or particles. The states and the bodies in 2D) and conservation of energy (for particles). The fundamental assumptions of lumped parameter representation of a single degree of free vibration of a subject state states systems, and concepts of a single degree of freedom systems. The physical origins of particles. The bodies and the to a single degree of freedom system can be derivation of materials and the im constructions to function (FRT); Mass, structure is statically determinate, interwise and damping controlled behaviour, Introduction to multiple derivation of and mithip derivation of a matrix representation of freedom system; comporties of materials and their comporties of materials and their comporties of materials and their comporties of a structure is statically determinate, indeterminate or a mechanical structure is statically determinate, indeterminate or a mechanical structure is statically determinate, indeterminate or a mechanical structure is statically determinate, indeterminate, indeterminate, indeterminate, indeterminate, indeterminate, indeterminate, indeterminate, indeterminate, indeterminate, indeterminate, indeterminate, indeterminate, indeterminate, indeterminate, indeterminate,<		energy principle for rigid bodies;	The fundamental concepts of		
Introduction to rigid badies motion in 3Dkinematics and kinetics of rigid badies. The Kinet/Potential energy (for particles and rigid badies in 2D) and impulse/momentum (for particles). The conservation of energy (for particles; principle of work and energy: Energy Conservation of answith principle of finear impulse and momentum for particles; Rigid badies Dynamics in 2D: kinematics relationships, centre of mass, mass moment of inertia and equations of motion.; Work and energy principle of finear impulse and energy: Conservation of answith the stady-state vibration of a single degree of freedom systems. The use of free vibration of multiple degree of freedom systems, and concepts of a single degree of freedom systems can be during the evibration analysis of a single degree of freedom system scand and their conful and analysis of a single degree of freedom system cand single degree of freedom systems cand control. The ways in which properties of matical system scand cange out on the stady-state vibration analysis of a single degree of freedom system cand engineering applications. Subject Specific Intellectual and engineering applications. Subject Specific Intellectual and statist statical y determinate, introduction to multiple degree of freedom system; completed this module you will be able to: Statics 1: - Determine whether a structure is statically determinate, indeterminate or a mechanical protein waystem, the to a solve materials properties of motion and a matix, representation of the equations of motion and a matix, representation of the equations of to a single degree of freedom system, to:Keenergy for statics 1: - Determine whether a structure is statically determinate, in determinate, is determinate, is determinate, is determinate, is determinate, is det		Principle of linear/angular impulse	kinematics and kinetics of particles		
in 3DThe Kinetic/Potential energy (for particles and rigid bodies in 2D) and imputs/momentum (for particles) The conservation of energy (for particles) and rigid bodies in 2D) and imputs/momentum (for particles) The conservation of momentum (for particles) The fundamental conservation of another most. Support is a 2D: kinematics relationships, centre of most, mass moment of ineria and energy principle for rigid bodies; The fundamental assumptions of lumped parameter mechanical systems, and concepts of equivalent mass, stiffness and domping; Free vibration analysis of a single degree of freedom systems. and concepts of equivalent mass, stiffness and domping; free vibration analysis of a single degree of freedom systems. and concepts of equivalent mass, stiffness and domping; free vibration analysis of a single degree of freedom systems con be lumped parameter mechanical systems, and concepts of endiced system with examples form civil and mechanical systems con be lumped parameter mechanical systems, and concepts of mechanical system with examples form civil and mechanical systems con be control The ways in which properties of meticals govern their selection in engineering applications. Subject Specific Intellectual and Research Skills; Having successfully completed this module you will be able to: Construct free body stafe forced to motion and a matix representation of them. Subsequent free vibration notify representation of them. Subsequent free vibration soft momental soft free vibration soft momental soft momental damping controlled behaviour; Introduction to multiple<		and momentum for rigid bodies;	The fundamental concepts of plane		
Dynamics-2 (D2): Particleparticles and rigid bodies in 2D) andDynamics: rectilinear andimpulse/momentum (for particles). Thecurvilinear motion; Newton's Law;and rigid bodies in 2D) andfree body diagrams: equations ofand rigid bodies in 2D) andmotion: Work and henry forparticles: principle of work andenergy: Energy Conservation; :particles: principle of inear impulse andmomentum for particles: Rigidparticles: and rigid bodies in 2D) andbodies Dynamics in 2D: kinematicsrelationships, centre of mas, masmoment of inertic and equationsassumptions of lumped parameterrepresentation of motion; Work and energyree vibrations of 1 and 2 degree ofredutionships, centre of mas, masrepresentation of motion of a elaytionsof motion; Work and energya single degree-of-freedom systemhumped parameter mechanicalsystems, - Ho use ofrepresentationrequivalent mass, stiffness anddamping; Free vibration analysis ofa single degree-of-freedom systemequivalent mass, stiffness anddargere of freedoma single degree of freedommaterials and theirbehaviour; Introduction to multipicdegree of freedomdegree of freedomsubject Specific Intellectual andwestor of a singledegree of freedom system;befinition of the equactions ofand rections, subject Specific Intellectual andwestor of freedomsubject Specific Intellectual andwestor of freedom system;befinition of the equations ofbefinition of the equations ofand mecha		Introduction to rigid bodies motion	kinematics and kinetics of rigid bodies		
Dynamics: rectilined and cuvilines motion: Work and Energy for particles: principle of Work and energy; Energy Conservation of motion: Work and Energy for particles: principle of linear impulse momentum for particles; Rigid bodies Dynamics in 2D: Kineardits reductionships, centre of mass, moment of inerfia and equations of motion; Work and energy principle for rigid bodies: The fundamental assumptions of umage a parameter mechanical systems, and concepts of equivalent mass, stiffness and damping; Free vibration analysis of a single degree of freedom system; nechanical system with examples from civil and mechanical systems, and concepts of segination analysis of a single degree of freedom system. to materials govern their selection in engineering; Steady state forced wibration analysis of a single degree of freedom system; statics 1: - Determine whether a stuck is takical 1: - Determine the rad subsequent free vibrations of motion and a matik; representation of the requency Response Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction of multiple degree of freedom system; comparise of materials and their cossile vibration and a matik; representation of the requency Response function of fmem. Subsequent free vibrations of motion and a matik; representation of them. Subsequent free vibrations of mo		in 3D	The Kinetic/Potential energy (for		
curvilinear motion: Newton's Laws: free body diagrams: equations of motion: Work and Energy for particles: principle of work and energy: Energy Conservation. Principle of linear impulse and momentum for particles; Rigid bodies Dynamics in 2D: kinematics relationships, centre of mass, mass of motion;. Work and energy: principle for rigid bodies; The fraduented acquations of umped parameter mechanical systems, and concepts of equivalent mass, stiffness and damping: Free vibration and analysis for ansingle degree of freedom systems, and concepts of engineering: Steady state forced wibration and a damping controlled behaviour; Infraduction for motion of the equations of umped parameter mechanical systems, and concepts of engineering: Steady state forced motion and a matrix representation of the equations of motion and a matrix representation of the equations of statist : The physical origins of properties of materials and their control. The ways in which properties of materials successfully Response Function (FRF): Mass, stiffness and the derivation of the derivation of the equations of stiffness and the frequency Response Function (FRF): Mass, stiffness and the frequency Response Function (FRF): Mass, stiffness and the frequency Response function of the controlled behaviour; Infraduction of them, Subsequent free vibration solution in herms of modes and the bending and trains Solve statically determinate, in herms of modes and the bending and trains Solve statically.curve vibrations of the degree of freedom stem; consulted the meactical structures - Calculate the reacticins of		Dynamics-2 (D2); Particle	particles and rigid bodies in 2D) and		
If ree body diagrams: equations of motion; Work and Energy for particles: principle of work and energy: Energy Conservation.; Principle of linear impulse and momentum for particles; Rigid bodies Dynamics in 2D; kinematics relationships, centre of mass, moment of inertia and equations of motion; Work and energy principle for rigid bodies; The fundamental assumptions of lumped parameter mechanical systems, and concepts of equivalent mass, stiffness and damping: free vibration analysis of a single degree of freedom systems, and concepts of mechanical system with examples from civil and mechanical engineering: Steady state forced wibration analysis of a single degree of freedom system; Definition of the fequency Response Function of (FRF): Mass, stiffness and damping controlled behaviour, Introduction to multiple degree of freedom system; Definition of the equations of motion and a matrix representation of materials and their completed this module you will be able to:and rigid bodies in 2D; and conservation of momentum (for conservations of lumped parameter mechanical system servation of a single degree of freedom system; Definition of the frequency Response Function for (FRF): Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom system; Definition of the equations of motion and a matrix representation of the equations of motion and a matrix representation of the equations of motion and a matrix representation of them. Subsequent free vibration solution in terms of modes and theand rigid bodies in 2D; and rigid		Dynamics: rectilinear and	impulse/momentum (for particles) The		
motion; Work and Energy for particles: principle of work and energy: Energy Conservation.; Principle of linear impulse and momentum for particles; Rigid bodies Dynamics in 2D: kinematics relationships, centre of mass, mass moment of inertia and equations of motion; Work and energy principle for rigid bodies: The fundamental adequations of motion; Work and energy principle for rigid bodies: The fundamental adequations of motion; Work and energy principle for rigid bodies: The fundamental asymptions of lumped parameter mechanical systems, and concepts of a single degree-of-freedom systems The use of represent the steady-state vibration of multiple derived and solved using a matrix representation.mass representation of multiple degree of-freedom systems can be derived and solved using a matrix representation.a single degree of freedom systems, and concepts of equivalent mass, stiffness and damping: Free vibration analysis of a single degree of freedom reducted mass, state forced wibration analysis of a single degree of freedom system; Definition of the frequency totation of haves, and damping controlled behaviou; Introduction to multiple degree of freedom system; Definition of the frequency to: Construct free body diagrams and use them to solve mechanical, structure is statically determinate, is duber three wibration solution in terms of modes and theconstruct res Calculate the reactions and their construct free body diagrams and use them to solve mechanics, - Calculate the reactions at the supports of statically determinate, calculate the reactions at the supports of statically determinate, calculate thereaction Solve statically- calculate thereaction Solve statically- calculate thereaction Solve statically- calculate thereaction.		curvilinear motion; Newton's Laws;	conservation of energy (for particles		
particles: principle of work and energy: Energy Conservation.; Principle of linear impulse and momentum for particles; Rigid bodies Dynamics in 2D: kinematics relationships, centre of mass, mass moment of inertia and equations of motion; Work and energy principle for rigid bodies; The fundamental assumptions of lumped parameter mechanical systems, and concepts of equivalent mass, stiffness and damping; Free vibration analysis of a single degree of freedom systems; and concepts of ergineering; Steady state forced wibration andysis of a single degree of freedom system; Definition of the Frequency Stiffness and damping controlled behaviour; Introduction to metrix representation of the equations of motion and a matrix representation of the equations of stiffness and damping controlled behaviour; Introduction for metric befinition of the equations of motion and a matrix representation of the equations of stiffness and tamping controlled behaviour; Introduction to multiple degree of freedom system; befinition of the equations of motion and a matrix representation of the equations of motion and a matrix representation of the equations of motion and a matrix representation of the matrix representation of the matrix representation of the equations of motion and a matrix representation of the equations of motion and a matrix representation of the matrix representation of them, Subsequent free vibration solution in terms of modes and theparticles). The fundamental matrix representation of them, Subsequent free vibration solution in terms of modes and theparticles). The fundamental matrix representation of them, Subsequent free vibration soluti		free body diagrams; equations of	and rigid bodies in 2D) and		
energy: Energy Conservation. ;assumptions of lumped parameter mass, stiffness and damper models mass, stiffness and damper models free vibrations of 1 and 2 degree of freedom systems The use of frequency response functions to a single degree-of-freedom system a single degree-of-freedom system How the free vibration of multiple degree of freedom systems can be derived nations, stiffness and solved using a matrix represent the steady-state vibration of a single degree-of-freedom system How the free vibration of multiple degree-of-freedom systems The physical origins of properties of materials sumptions of damping: Free vibration analysis of a single degree of freedom vibration analysis of a single degree of freedom systems. The physical origins of properties of materials and their conthol The ways in which properties of materials govern their selection in engineering applications. Subject Specific Intellectual and Research Skills: Having successfully completed this module you will be able to:Response Function (FRF): Mass, stiffness and damping controlled behaviour, Introduction to multiple degree of freedom system; the derivation of the equations of stucture is statically determinate, intotermine whether a stucture is statically determinate, indeterminate or a mechanics, - Calculate the reactions at the supports of statically determinate structures, - Calculate the reactions and the supports of statically determinate structures, - Calculate the reactions, - Calculate the reactions, - Calculate the set structures, - Calculate the set structures, - Calculate the set structure, - Calculate the set structures, - Calculate the		motion; Work and Energy for	conservation of momentum (for		
Principle of linear impulse and momentum for particles; Rigidmass, stiffness and damper models Free vibrations of 1 and 2 degree of freedom systems The use of frequency response functions to represent the steady-state vibration of a single degree-of-freedom system How the free vibration of multiple degree-of-freedom systems can be degree-of-freedom system scan be of materials and their control The ways in which properties of materials govern their selection in engineering splications. Subject Specific Intellectual and Research Skills: Having successfully degree-of freedom system; completed this module you will be able to:Statics 1: - Determine whether a structure is statically determinate, indeterminate, indeterminate, indeterminate, indeterminate, or a mechanics, - Calculate the reactions at the supports of statically determinate structures, - Calculate the secactures, - Calculate		particles: principle of work and	particles) The fundamental		
momentum for particles; Rigid bodies Dynamics in 2D: kinematics relationships, centre of mass, mass moment of inertia and equations of motion; Work and energy principle for rigid bodies; The fundamental assumptions of lumped parameter mechanical systems, and concepts of a single degree of-freedom systems can be derived and solved using a matrix representation.Free vibration of a single degree-of-freedom systems and concepts of representation.a single degree of freedom systems, and concepts of a single degree of freedom uvioration analysis of a single degree of freedom systems and concepts of representation.Materials: - The physical origins of properties of materials and their control The ways in which properties of materials govern their selection in engineering: Steady state forced system; completed this module you will be able to:Definition of the Frequency Response Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom systems, the derivation of the equations of motion and a matrix representation of the equations of stucture is solve expanse.Statics 1: - Determine whether a structure is solve expanse.Subject Specific line free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Calculate structures.Statics 1: - Determine whether a statically determinate structures Calculate the reactions and use them to solve statically.		energy; Energy Conservation. ;	assumptions of lumped parameter		
bodies Dynamics in 2D: kinematics relationships, centre of mass, mass moment of inertia and equations of motion; Work and energy principle for rigid bodies; The fundamental assumptions of lumped parameter mechanical systems, and concepts of equivadent mass, stiffness and damping; Free vibration analysis of a single degree of freedom mechanical system with examples from civil and mechanical engineering; Steady state forced wibration analysis of a single degree of freedom system; Definition of the Frequency Response Function (FF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom system; straftness and amping controlled behaviour; Introduction to multiple degree of freedom system; representation of the equations of motion and a matrix representation of them. Subsequent free vibration solution in terms of modes and the		Principle of linear impulse and	mass, stiffness and damper models		
relationships, centre of mass, mass moment of inetria and equations of motion.; Work and energy principle for rigid bodies; The fundamental assumptions of lumped parameter mechanical systems, and concepts of equivalent mass, stiffness and damping: Free vibration analysis of a single degree of freedom mechanical system with examples from civil and mechanical engineering; Steady state forced vibration analysis of a single degree of freedom system; Definition of the Frequency Response Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom system; completed this module you will be able to: Construct free body diagrams and use them to solve mechanical engineering controlled behaviour; Introduction to multiple degree of freedom system; completed this module you will be able to: Construct free body diagrams and use them to solve mechanics at the supports of materials and their completed this module you will be able to: Construct free body diagrams and use them to solve mechanics at the supports of statically determinate, indeterminate or a mechanism, - Construct free body diagrams and use them to solve mechanics problems, - Calculate the reactions at the supports of statically determinate structures Calculate		momentum for particles; Rigid	Free vibrations of 1 and 2 degree of		
moment of inertia and equations of motion; Work and energy principle for rigid bodies; The fundamental assumptions of lumped parameter mechanical systems, and concepts of equivalent mass, stiffness and damping; Free vibration analysis of a single degree of freedom system with examples from civil and mechanical engineering; Steady state forced wibration analysis of a single degree of freedom system; control The ways in which properties of materials and their control The ways in which properties of materials govern their selection in engineering; Steady state forced wibration analysis of a single degree of freedom system; completed this module you will be able to: Response Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom system, the derivation of a matrix representation of the equations of motion and a matrix representation solution in terms of modes and therepresent the steady-state vibration of multiple degree of freedom system How the free vibration analysis of a single Response Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom system, the motion and a matrix representation of them. Subsequent free vibration solution in terms of modes and therepresent the steady-state vibration of multiple of materials and their constituent is statically determinate, indeterminate structures Calculate the reactions at the supports of statically determinate structures Calculate structures Calculate structures Calculate structures Subsequent free vibration solution in terms of modes and therepresent the steady-state vibration of multiple of materials and their calculate structures Subsequent free vibration solution <td></td> <td>bodies Dynamics in 2D: kinematics</td> <td>freedom systems The use of</td> <td></td> <td></td>		bodies Dynamics in 2D: kinematics	freedom systems The use of		
of motion;; Work and energy principle for rigid bodies; Thea single degree-of-freedom system How the free vibration of multiplefundamental assumptions of lumped parameter mechanical systems, and concepts of equivalent mass, stiffness and damping; Free vibration analysis of a single degree of freedom mechanical system with examples from civil and mechanical engineering; Steady state forced vibration analysis of a single degree of freedom system; completed this module you will be able to;Of materials govern their selection in engineering; Steady state forced subject Specific Intellectual and statisci 1: - Determine whether a structure is statically determinate, indeterminate, indeterminate, indeterminate, construct free body diagrams and use them to solve mechanics problems Construct free body diagrams and use them to solve mechanics problems Construct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Calculate the reactions at the supports of statically detorminate structures Calculate there a structures Calculate there and structures C		relationships, centre of mass, mass	frequency response functions to		
principle for rigid bodies; The fundamental assumptions of lumped parameter mechanical systems, and concepts of 		moment of inertia and equations	represent the steady-state vibration of		
fundamental assumptions of lumped parameter mechanical systems, and concepts of equivalent mass, stiffness and damping; Free vibration analysis of a single degree of freedom mechanical system with examples from civil and mechanical engineering; Steady state forced vibration analysis of a single degree of freedom system; Definition of the Frequency Response Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom systems, the derivation of the equations of motion and a matrix representation of them. Subsequent free vibration solution in terms of modes and thedegree-of-freedom systems can be derived and solved using a matrix representation. Materials: - The physical origins of properties of materials and their control The ways in which properties of materials govern their selection in engineering applications. Subject Specific Intellectual and Research Skills: Having successfully completed this module you will be able to: Construct free body diagrams and use them to solve mechanics problems Calculate stresses and strains due to bending and torsion Solve statically-		of motion,; Work and energy	a single degree-of-freedom system		
lumped parameter mechanical systems, and concepts of equivalent mass, stiffness and damping; Free vibration analysis of a single degree of freedom wibration analysis of a single degree of freedom system; completed this module you will be able to:Materials: - The physical origins of properties of materials and their control The ways in which properties of materials govern their selection in engineering; Stady state forced subject Specific Intellectual and wibration analysis of a single degree of freedom system; completed this module you will be able to:Materials: Having successfully successfully successfullyResponse Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom systems, the derivation of the equations of motion and a matrixStatics 1: - Determine whether a structure is statically determinate, indeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Coalculate stresses and strains due to bending and torsion Solve statically.		principle for rigid bodies; The	How the free vibration of multiple		
lumped parameter mechanical systems, and concepts of equivalent mass, stiffness and damping; Free vibration analysis of a single degree of freedom wibration analysis of a single degree of freedom system; completed this module you will be able to:Materials: - The physical origins of properties of materials and their control The ways in which properties of materials govern their selection in engineering; Stady state forced subject Specific Intellectual and wibration analysis of a single degree of freedom system; completed this module you will be able to:Materials: Having successfully successfully successfullyResponse Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom systems, the derivation of the equations of motion and a matrixStatics 1: - Determine whether a structure is statically determinate, indeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Coalculate stresses and strains due to bending and torsion Solve statically.		fundamental assumptions of	degree-of-freedom systems can be		
equivalent mass, stiffness and damping; Free vibration analysis of a single degree of freedom mechanical system with examples from civil and mechanical engineering; Steady state forced vibration analysis of a single degree of freedom system; Definition of the Frequency Response Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom systems, the derivation and a matrix representation of the equations of motion and a matrixMaterials: - The physical origins of properties of materials and their control The ways in which properties of materials govern their selection in engineering applications. Subject Specific Intellectual and Research Skills: Having successfully completed this module you will be able to:0Response Function (FRF); Mass, structure is statically determinate, indeterminate or a mechanism Calculate the reactions at the supports of statically determinate structures Calculate stresses and strains due to bending and torsion Solve statically-		lumped parameter mechanical			
damping; Free vibration analysis of a single degree of freedomproperties of materials and their control The ways in which propertiesmechanical system with examples from civil and mechanical engineering; Steady state forcedof materials govern their selection in engineering applications.wibration analysis of a single degree of freedom system; Definition of the Frequency stiffness and damping controlledSubject Specific Intellectual and Research Skills: Having successfully to:Response Function (FRF); Mass, stiffness and damping controlledStatics 1: - Determine whether a structure is statically determinate, indeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Calculate stresses and strains due to bending and torsion Solve statically-		systems, and concepts of	representation.		
a single degree of freedom mechanical system with examples from civil and mechanical engineering; Steady state forced vibration analysis of a singlecontrol The ways in which properties of materials govern their selection in engineering applications. Subject Specific Intellectual and Research Skills: Having successfully completed this module you will be able to:Definition of the Frequency Response Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom systems, the derivation of the equations of motion and a matrix representation of them.Statics 1: - Determine whether a structure is statically determinate, indeterminate or a mechanism Calculate the reactions at the supports of statically determinate structures Calculate stresses and struins due to bending and torsion Solve statically-		equivalent mass, stiffness and	Materials: - The physical origins of		
mechanical system with examples from civil and mechanical engineering; Steady state forced vibration analysis of a single degree of freedom system; Definition of the Frequency stiffness and damping controlled behaviour; Introduction to multiple degree of freedom systems, the degree of freedom systems, the derivation of the equations of motion and a matrixof materials govern their selection in engineering applications. Subsequent free vibration solution in terms of modes and theof materials govern their selection in engineering applications. Subsequent free vibration solution in terms of modes and theof materials govern their selection in engineering applications. Subsequent free vibration solution in terms of modes and theof materials govern their selection in engineering applications. Subsequent free vibration solution in terms of modes and theof materials govern their selection in engineering applications. Subsequent free vibration solution in terms of modes and theof materials govern their selection in engineering applications. Subsequent free vibration solution in terms of modes and theof materials govern their selection in terms of modes and theof statically determinate structures Calculate stresses and strains due to bending and torsion Solve statically-of statically-		damping; Free vibration analysis of	properties of materials and their		
from civil and mechanical engineering; Steady state forced vibration analysis of a single degree of freedom system; Definition of the Frequency statics 1: - Determine whether a structure is statically determinate, indeterminate or a mechanism Construct free body diagrams and use derivation of the equations of motion and a matrixengineering applications. Subject Specific Intellectual and Research Skills: Having successfully completed this module you will be able to:degree of freedom system; Definition of the Frequency Response Function (FRF); Mass, statics 1: - Determine whether a structure is statically determinate, indeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Calculate stresses and strains due to bending and torsion Solve statically-		a single degree of freedom	control The ways in which properties		
engineering: Steady state forced vibration analysis of a single degree of freedom system; Definition of the Frequency stiffness and damping controlledSubject Specific Intellectual and Research Skills: Having successfully completed this module you will be able to:Response Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom systems, the derivation of the equations of motion and a matrixStatics 1: - Determine whether a structure is statically determinate, indeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Calculate stresses and strains due to bending and torsion Solve statically-		mechanical system with examples	of materials govern their selection in		
vibration analysis of a single degree of freedom system; Definition of the Frequency Response Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom systems, the degree of freedom systems, the derivation of the equations of motion and a matrix representation of them.Research Skills: Having successfully completed this module you will be able to:Vibration of the Frequency Response Function (FRF); Mass, stiffness and damping controlled degree of freedom systems, the degree of freedom systems, the derivation of the equations of motion and a matrix representation of them.Statics 1: - Determine whether a structure is statically determinate, indeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Calculate stresses and strains due to bending and torsion Solve statically-		from civil and mechanical	engineering applications.		
degree of freedom system; Definition of the Frequency Response Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom systems, the derivation of the equations of motion and a matrix representation of them. Subsequent free vibration solution in terms of modes and thecompleted this module you will be able to:degree of freedom system; the derivation of the equations of in terms of modes and theStatics 1: - Determine whether a structure is statically determinate, indeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Calculate stresses and strains due to bending and torsion Solve statically-		engineering; Steady state forced	Subject Specific Intellectual and		
Definition of the Frequency Response Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom systems, the derivation of the equations of motion and a matrixStatics 1: - Determine whether a structure is statically determinate, indeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Subsequent free vibration solution in terms of modes and theto:		vibration analysis of a single	Research Skills: Having successfully		
Response Function (FRF); Mass, stiffness and damping controlled behaviour; Introduction to multiple degree of freedom systems, the derivation of the equations of motion and a matrixStatics 1: - Determine whether a structure is statically determinate, indeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Subsequent free vibration solution in terms of modes and theStatics 1: - Determine whether a structure is statically determinate, indeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Calculate stresses and strains due to bending and torsion Solve statically-		degree of freedom system;	completed this module you will be able		
stiffness and damping controlled behaviour; Introduction to multiple degree of freedom systems, the derivation of the equations of motion and a matrixstructure is statically determinate, indeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Subsequent free vibration solution in terms of modes and thestructure is statically determinate, indeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Calculate stresses and strains due to bending and torsion Solve statically-		Definition of the Frequency	to:		
behaviour; Introduction to multiple degree of freedom systems, the derivation of the equations of motion and a matrixindeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Subsequent free vibration solution in terms of modes and theindeterminate or a mechanism Construct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Calculate stresses and strains due to bending and torsion Solve statically-		Response Function (FRF); Mass,	Statics 1: - Determine whether a		
degree of freedom systems, the derivation of the equations of motion and a matrixConstruct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Subsequent free vibration solution in terms of modes and theConstruct free body diagrams and use them to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Calculate stresses and strains due to bending and torsion Solve statically-		stiffness and damping controlled	structure is statically determinate,		
derivation of the equations of motion and a matrixthem to solve mechanics problems Calculate the reactions at the supports of statically determinate structures Calculate stresses and strains due to bending and torsion Solve statically-		behaviour; Introduction to multiple	indeterminate or a mechanism		
motion and a matrixCalculate the reactions at the supportsrepresentation of them.of statically determinate structuresSubsequent free vibration solutionCalculate stresses and strains due toin terms of modes and thebending and torsion Solve statically-		degree of freedom systems, the	Construct free body diagrams and use		
representation of them.of statically determinate structuresSubsequent free vibration solutionCalculate stresses and strains due toin terms of modes and thebending and torsion Solve statically-		derivation of the equations of	them to solve mechanics problems		
Subsequent free vibration solution in terms of modes and theCalculate stresses and strains due to bending and torsion Solve statically-		motion and a matrix	Calculate the reactions at the supports		
in terms of modes and the bending and torsion Solve statically-		representation of them.	of statically determinate structures		
		Subsequent free vibration solution	Calculate stresses and strains due to		
corresponding natural frequencies determinate plane trusses Calculate,		in terms of modes and the	bending and torsion Solve statically-		
		corresponding natural frequencies	determinate plane trusses Calculate,		

		-	
Materials (M); Materials in Engineering: Metals, ceramics, polymers and composites.; Fundamentals: Atomic structure and interatomic bonding; electrons, atoms and molecules; the Periodic table; bonding and interatomic forces; the structure of crystalline solids; basic structures, unit cells; holes and lattices; imperfections in solids; point, linear, planar and volume defects; diffusion.; Mechanical properties: Stress and strain; elasticity; tensile properties; hardness; strengthening mechanisms; recovery, recrystallization and grain growth.; Microstructures and their control: Phase diagrams; thermal processing; precipitation hardening; Failure of metals: Failure; fracture, brittle and ductile failure; impact and fracture toughness; fatigue; creep.; Non- metallic materials and their properties: Ceramics and glasses; main classes, properties and uses; polymers; basic structures and bonding; polymerisation; cross linking; thermoplastics and thermosets; composites; main classes, properties and uses.; Materials in engineering applications: Case studies.	and plot diagrams of, the internal actions of statically-determinate beams Calculate the deflection due to bending at different points of a beam Calculate the critical buckling load of elastic struts Interpret experimental data to deduce structural or material behaviour Assess whether theoretical assumptions are supported by laboratory observations. Statics 2: - Carry out stress and strain transformations in 2D Apply Mohr's circle to solve stress and strain transformation problems and derive principle strains/stresses Interpret measurements using strain gauge rosettes. Dynamics 1: Having successfully completed Stream-1, you will additionally be able to: - Develop particle and rigid body trajectory equations Write the equations of motion for particles and rigid bodies Apply the principle of impulse and momentum to particles and rigid bodies in 2D. Materials: - Demonstrate how defects in atomic structure affect mechanical properties Relate the kinetics of a number of apparently different materials processes to the same underlying process (diffusion) Explain how strengthening mechanisms occur on the microstructural scale and how		
applications: Case studies.	how strengthening mechanisms occur		
	this is related to the bulk mechanical properties we require in engineering		
	structures Apply the use of phase diagrams to explain the development		
	of microstructure and hence how alloys		

production of the second secon	are designed Analyse failure problems and apply the correct racture mechanics approach Show now non-metallic bonding leads to very different properties (e.g. ceramics and polymers). Dynamics 2: Having successfully completed Stream-2, you will additionally be able to: - Develop imple particle and rigid body rajectory equations Write the equations of motion for particles and igid bodies Apply the principle of work and energy to particles and rigid podies in 2D Apply the principle of near impulse and momentum to particles Determine both free and harmonically) forced vibrations of a ingle degree-of-freedom system Analyse the free vibration of a two degree-of-freedom system. transferable and Generic Skills: Having uccessfully completed this module you will be able to: -Information handling Gelf-management (e.g. time nanagement) Written communication Numeracy Being an independent learner. Gubject Specific Practical Skills Having successfully completed this nodule one will be able to: - Carry out calculations relating to structural pehaviour and strength of structural nembers Experiment on idealised orms of structure in the laboratory Collate experimental data Manipulate experimental data in order o draw specific conclusions.			
--	---	--	--	--

		1		1		
University of Southampton Acoustical Engineering	Audio and Signal Processing	Fundamentals of signal processing with applications 1. Fourier analysis (continuous and discrete), auto-spectra, cross- spectra, spectrograms. 2. Convolution and its digital implementation. Linear systems 3. Basic theory of linear, time invariant systems. 4. Linear systems identification: basic theory and applications. Audio systems and perception 5. Channel quality and sound perception 6. Audio specifications. 7. Theory of sound reproduction (stereophony, loudspeaker-room interaction, etc.)	To demonstrate knowledge of the basics of digital signals and digital signal processing, of Fourier analysis and to apply it the analysis of audio signals and systems - to demonstrate a working knowledge of the concept of convolution, of the convolution theorem, of digital filters, and of some of their applications -to apply the basic signal processing techniques to estimate the impulse response and frequency response function of a linear, time-invariant system and to interpret the results -to describe and explain the basic operating principles of a range of systems for audio data acquisition and reproduction -to understand the metrics and specifications associated with audio channel quality - to	Lectures; tutorial sessions; computer-based laboratories on applications of digital signal processing	https://www.sou thampton.ac.uk /courses/module s/isvr2041.page# aims_and_objec tives	10.01.2019.
		8. Analogue vs digital audio technologies	demonstrate a knowledge of the operating principles of sound reproduction and of its limitations.			
University of Southampton Acoustical Engineering	Mechanics, Machines & Vibration	 Kinematics and Dynamics as Part of the Design Process (2 Lectures): Mechanisms & Machines, Four-Bar Linkage Mechanism, Mobility of Mechanisms, Kinematic Chain (closed), Kinematic Pair, Types of Four-Bar Chain, Kinematic Inversion, Grashoff's Theory, Effect of Joints on DOF, Grübler's Formula, Practical Implications. Design of Mechanisms (2 lectures) Design Considerations (Kinematics Viewpoint), Transmission Angle & Efficiency, Even-Return Mechanism, Quick- Return Mechanism, Design of a Quick-Return Crank-Rocker. 	Demonstrate knowledge and understanding of rigid body kinematics of linkages, design of four bar mechanisms, the kinematics and kinetics of simple machine elements and devices -Develop relationships between mass, forces and the motion of a mechanism and the consequent vibrational response of a system to such forces. Subject Specific Intellectual and Research Skills: Having successfully completed this module you will be able to: - Provide critical analysis and conclusions. Subject Specific Practical Skills: Having successfully completed this module you will be able to: - Perform mathematical	Lectures; laboratory sessions; assignment	https://www.sou thampton.ac.uk /courses/module s/feeg2002.pag e#aims_and_obj ectives	10.01.2019.

			2075) 2080 VAD
 3) Moment of Inertia (1 lecture) Experimental Methods for Estimating Moment of Inertia: Compound Pendulum & Trifilar Pendulum, Derivation of Natural Frequencies. 4) Kinematic Analysis of Mechanisms (4 lectures) Position and Velocity Diagrams for linkage mechanism, Instantaneous Centres, Acceleration Diagrams for Crank-Slider Chain and Four- Bar Chain Mechanism Including Coriolis Component of Acceleration. 5) Static and Dynamic Balancing & Gyroscopic Effects (2 lectures) Gyroscopic Effects, Static Balance (Single-plane balance), Several out of Balance Masses, Measuring and Correcting Imbalance, Dynamic Balance (2-Plane balance), Graphical Method, - Moment and Force Polygons. 6) Introducing the software Working Model 2D (2 lectures) 7) Vibration of a SDOF System (8 lectures) -Free Vibration, Damping (Viscous and Structural), Logarithmic Decrement, Harmonically Forced Vibration, Response to periodic excitation, Impulse response, Convolution, Shock spectra, Force and motion transmissibility. 8) Vibration of a 2-DOF System (4 lectures) Free Vibration and Normal Modes, Co-ordinate Coupling and Principal Co- ordinates, Forced Vibration, 	analysis of displacement, velocity (via instant centres and vector polygons), and acceleration of Mechanisms Produce a formal technical report - Perform kinematic synthesis and analysis of linkage mechanisms - Use Working Model 2D software for kinematic design of a linkage mechanism and carry out motion simulation Validate theoretical models through laboratory experiments such as measuring moment of inertia of a complex component - Develop and apply the solutions of the equations of motion to problems for free and forced vibration under harmonic excitation - Use a matrix approach for the solution and understanding of the solutions produced - Conduct vibration analysis of uniform continuous systems and understand the solutions for axial vibration of rods and flexural vibration of beams - Apply approximate methods of solution for non-uniform continuous systems - Carry out experimental work and formulate analytical models and solutions for simple systems.		
ordinates, Forced Vibration, Damping, Vibration absorber,			

		Torsional Vibration of Geared				
		systems, Degenerate systems.				
		9) Vibration of multi-degree of				
		freedom systems (3 lectures) - Free				
		and Forced Response by Modal				
		Analysis, Introduction to				
		Orthogonality and Generalised				
		Coordinates, Modal Damping and				
		Normal Mode Summation.				
		10) Vibration of Continuous				
		systems (3 lectures) - Longitudinal				
		Vibration of Rods, Modes of				
		Vibration: Natural Frequencies and				
		Mode Shapes. Forced Vibration of				
		Continuous Systems: Modes and				
		Resonance, Flexural Vibration of				
		Beams, Derivation of Equation of				
		Motion and Procedure for				
		Obtaining Free Vibration Solutions.				
		11) Classical Methods (2 lectures) -				
		Rayleigh's Method for				
		Fundamental Natural Frequency,				
		Applications to Beams with				
		Discrete Masses and Springs				
		Attached, Effect of Rotation and				
		Different Boundary Conditions.				
		Laboratory Work (10%):				
		1. Moment of Inertia Measurement				
		of a Connecting Rod (Formative)				
		2. Vibration measurement and				
		control of a multi-storey tower				
		(10%)				
		Design Assignment (Formative)				
		1. Dimensional Synthesis of a Quick				
		Return Mechanism and its				
University of	Acoustics II	Efficiency in Torque Transmission.	Disciplingry Spacific Lagrains	Lectures; tutorial;	https://www.com	10.01.2019.
University of Southampton	ACOUSTICS II	1. Revision of basic principles of 1D	Disciplinary Specific Learning Outcomes: - Discuss the continuity and	laboratory	https://www.sou thampton.ac.uk	10.01.2017.
soundinpion		sound propagation from Part I. 2. Conservation equations of	momentum equations of fluid dynamics	sessions.	/courses/module	
		compressible fluid dynamics for 3D	and use them to derive the acoustic	303310112.	s/isvr2042.page#	
		sound fields.	wave equation in three dimensions		s/isvizu4z.puge#	

					V -	
Acoustical Engineering		 3. The Helmholtz equation and the Wave equation in three dimensions. 4. Sound energy, sound power and sound intensity. 5. Sources of sound: monopoles, dipoles, vibrating surfaces. 6. Acoustic modes in ducts, enclosure and other systems. 7. Transmission and reflection of plane waves obliquely incident on a plane boundary. Labs: 1. Impedance tube measurement. 2. Sound power measurement. 3. Vibroacoustics. 	Explain the relationship between the wave equation and the Helmholtz equation, verify the equivalence of the two approaches when solving acoustical problems, and choose which one is appropriate in a given situation Define and calculate sound energy and sound intensity Account, qualitatively, for the mechanisms of energy loss when sound is absorbed and distinguish between locally reacting and non-locally reacting boundaries Calculate the sound-field of monopole and dipole sources and source distributions, illustrate them by means of computer programs, and recognise their relationship to practical sources Use the Helmholtz equation to obtain the modes of an acoustical space and explain how they can be used to obtain solutions to source radiation problems in that space Calculate the transmitted and reflected waves when plane waves are obliquely incident on a plane interface between two fluids Explain the basic measurements made when assessing room acoustics and relate them to the acoustical theory previously developed and the description of a plane theory previously developed and the description of a plane theory previously developed and the description of a plane theory previously developed and the description of a plane to the acoustical theory previously developed and coustical theory previously developed and the description of a plane to the acoustical theory previously developed and coustical theory previously deve		aims_and_objec tives	
University of Southampton Acoustical Engineering	Acoustical Engineering Design	Dependent upon the tasks required for the design problems. The module aims to cover a wide number of both acoustic and vibration principles and, where appropriate, include experimental validation/testing/quantification of the problem. It is anticipated that the following will be covered; Noise and Vibration sources and their quantification; Vibration	and the description of absorption. Having successfully completed this module one will be able to: -Take noise and vibration measurements analyse the data for frequency content and interpret this in terms of the sources and transmission Develop appropriate physical models, produce a numerical implementation of such and then use the numerical models to design against specified targets Identify and quantify any vibration control features, e.g.	Presentations; projects ; review ; experimental tests	https://www.sou thampton.ac.uk /courses/module s/isvr3059.page# aims_and_objec tives	10.01.2019.

	control methods; Noise Control Methods; Acoustic and vibration designs for practical implementation Special Features To some extent the investigations and objectives are open-ended and credit will be given for	isolation and compare against simple lumped parameter models where possibleProduce a list of suggested design features and noise control improvements and predict what benefit these might produceBe able to present your findings to an engineering audience in a clear and			
	'thinking off the wall', but supporting any ideas or suggestions with applicable engineering design and theory.	well-structured oral and written presentation			
University of Southampto Acoustical Engineering	Noise control requirements: Motivation for noise control, EC directives on machinery noise and outdoor equipment, specification of noise control targets. Units of noise measurement: Overview of decibels for sound pressure, intensity and power levels; combining sound pressures (incoherent and coherent); basic frequency analysis including one- third octave bands; A-weighting and other measures of sound. Characterization of noise sources: Physical nature of noise sources, idealizations; acoustical efficiency; frequency spectrum; parametric dependencies including operational speed; directivity; estimation of source sound power (including engines, fans etc). Summary of sound power measurement methods. Sound propagation outdoors and indoors: Point source and line source; geometric spreading; ground effects; meteorological effects; noise barriers; sound in rooms, reverberant field.	Ability to use common units of noise measurement, characterise noise sources, be familiar with standard methods for the measurement of sound power - use appropriate formulae for sound propagation, radiation from vibrating sources, transmission through partitions, absorption by porous materials, vibration isolation and damping, attenuation by silencers - select appropriate noise control techniques for the solution of practical noise problems and evaluate their performance -apply the noise control techniques considered in an integrated way to a practical design case	lectures; Various practical demonstrations	https://www.sou thampton.ac.uk /courses/module s/isvr3064.page# aims_and_objec tives	10.01.2019.

Principles of passive noise control:	
Effect of multiple sources and	
multiple paths; noise path models;	
control at source; airborne	
transmission; structure-borne transmission.	
Sound radiation from vibrating	
structures (engineering approach) Definition of radiation ratio:	
radiation from monopole and	
dipole sources; radiation from	
bending waves in plates; corner	
modes, edge modes,	
coincidence; means of reducing	
radiation ratio.	
Transmission of airborne sound	
through partitions	
Transmission loss of a single	
partition, mathematical derivation	
for normal incidence; coincidence	
and the transmission loss for	
particular angles of incidence and	
for a diffuse field (qualitative);	
double partitions (qualitative); measurement methods for sound	
reduction index; machinery	
enclosures using Sabine formula.	
Sound absorbent materials and	
applications: Surface impedance	
and its relation to absorption	
coefficient; qualitative treatment	
of dissipation mechanisms;	
practical forms of sound absorber;	
measurement techniques for	
absorption.	
Vibration control: Force and	
velocity excitation, blocked force	
and free velocity; vibration	
isolation - low and high frequency	
models; damping treatments;	
effects of damping; structural	

			modification; vibration absorbers and neutralisers. Silencer design: Acoustic				
			impedance; insertion loss; reactive				
			silencers: side branches, expansion				
			chambers; flow-generated noise;				
			lined ducts, splitter attenuators;				
			pressure drop; break-out noise.				10.01.0010
	niversity of	Finite Element	The general continuous solid	Having successfully completed this	Lectures	https://www.sou	10.01.2019.
3	outhampton	Analysis in Solid Mechanics	mechanics: - Variational principle in mechanics. Principle of	module, one will be able to demonstrate knowledge and		thampton.ac.uk /courses/module	
		Mechanics	minimum total potential energy.	understanding of: - Variational	Class discussions	s/feeg3001.pag	
-	coustical		Hamilton's Principle Lagrange's	principles in statics and dynamics of		e#aims_and_obj	
E	ngineering		equations in dynamics of	structure - Fundamental concepts and	Practical FEA	ectives	
			mechanical systems A brief	method of FEA - Direct stiffness,	model		
			review of normal modes and	Rayleigh-Ritz methods and FEA FEA	presentation		
			natural frequencies in multi-	formulation in solid mechanics			
			degree-of-freedom discrete	Fundamental isoparametric elements.	ANSYS computer		
			systems Constitutive equations:	Subject Specific Intellectual and	laboratory		
			an overview	Research Skills: - Formulate finite	sessions		
			Finite Element Analysis: -	element matrices variationally			
			Application of the principle of minimum potential energy to	Analyse and build FEA model for various engineering problems Identify	(ANSYS not available on		
			approximate solution of elasticity	information requirements and sources	VPN)		
			problems Rayleigh-Ritz Method in	for design and evaluationSynthesise	VINJ		
			statics Derivation of equations of	information and ideas for use in the			
			motion and FE matrices in	evaluation process.	Learning activities include		
			structural dynamics General FE	Subject Specific Practical Skills: -Choose			
			formulation: aspects of derivation	commercial FEA software to solve	Directed		
			of the element matrices, assembly,	practical problems through workshops	reading		
			application of boundary	and a design assignment.	Assignments		
			conditions, solution procedures		, asignino no		
			Practical aspects of the use of FE		Example		
			codes: pre- and post-processing. The use of commercial codes e.g.		exercises and		
			ANSYS Finite Element Formulation		writing of		
			for 1D elastic continuum (rods,		laboratory report		
			shafts, strings): statics and				
			dynamics - FE formulation for		Independent		
			trusses in 2D: coordinate		learning to use		
			transformations - Beam bending		-		

		elements. Statics and dynamics		FEA software on		
		Constant Strain Triangle (CST)		computers		
		elements for plane stress and		'		
		plane strain, axi-symmetric				
		elements 2D Quadrilateral				
		elements - Isoparametric FE				
		formulations Element selection				
		Special Features A balanced mix				
		of the theoretical and practical				
		aspects of a tool commonly used				
		in engineering design.				
University of	Electroacoustics	Description of electrical,	Ability to: - Describe the general two-	Lectures; class	https://www.sou	10.01.2019.
Southampton		mechanical and electroacoustic	port description of transducers	and a laboratory	thampton.ac.uk	
		systems as two-port networks.	including their electrical, mechanical	session	/courses/module	
Acoustical		Coupling. Analogies. Acoustic	and acoustic properties Describe the		s/isvr6137.page#	
Engineering		networks. Reciprocity. Microphone	principles of operation of condenser,		aims_and_objec	
		and loudspeaker arrays.	ceramic, electret and dynamic		tives	
		Hydrophones.	microphones Microphone calibration			
		Equivalent models for moving coil	methods Understand and interpret			
		loudspeakers, and relationship to	the literature relating to loudspeaker			
		practical loudspeakers.	and microphone design and operation.			
		Loudspeaker performance in	- Recognise and select appropriate			
		terms of frequency response,	techniques for the analysis of			
		directivity, and distortion, and their	electroacoustic problems - Understand			
		measurement. The influence of an	product specifications for			
		infinite baffle, closed box and	electroacoustic transducers and			
		tuned cabinets. Crossover	interpret manufacturers' catalogues			
		networks. The horn equation,	Recognise and use electroacoustic			
		simple solutions and application,	analogies Predict changes to the			
		loudspeaker specifications. Power	electrical behaviour of a transducer by			
			its mechanical environment and vice-			
		output and mutual coupling.				
		Diaphragm dynamics.	versa Describe equivalent models for			
		Microphones:	moving coil loudspeakers Recognise			
		Pressure and pressure gradient	and use the Thiele-Small parameters -			
		principles. Diffraction. Diaphragm	Discuss loudspeaker and microphone			
		dynamics and transduction	performance in terms of frequency			
		mechanisms hence complete	response, directivity and distortion -			
		frequency responses for various	Predict the influence of a baffle, a			
		microphone types. Methods of	closed box and a tuned enclosure on			
		calibration. Directivity of first order	the response of a loudspeaker Discuss			
		microphones. Diffuse field	the use of crossover networks in			

		response. Highly directional	loudspeaker systems - Describe the			
		microphones. Microphone	principles of pressure and pressure			
		specifications.	gradient microphones and be aware of			
		Laboratory: Estimation of the Thiele	the frequency limits due to equalisation			
		Small parameters of a loudspeaker	and diffraction.			
		driver.				
University o	Mathematical	Mathematical methods for	Having successfully completed this	lecture/tutorial	https://www.sou	10.01.2019.
Southampto		acoustics (vector calculus,	module, one will be able to	sessions; a	thampton.ac.uk	
	Acoustics	generalised functions, Fourier	demonstrate knowledge and	formative	/courses/module	
Acoustical		analysis, Green functions and	understanding of: - More advanced	assignment	s/isvr3072.page#	
Engineering		theory)	concepts associated with modelling		aims_and_objec	
		Revision of fluid dynamics and	sound fields generated by complex		tives	
		acoustics	source distributions Theoretical			
		Monopoles, dipoles and	models to describe the sound field			
		quadrupoles	produced by acoustic sources in			
		Inhomogeneous wave and Helmholtz equations	enclosures or ducts Integral solutions of the inhomogeneous Helmholtz			
		The acoustic Green function	equation, using the acoustic Green			
		Integral solutions of the	function.			
		inhomogeneous Helmholtz	Explain more advanced concepts in			
		equation	theoretical acoustics, such as the link			
		Sound in enclosures	between acoustic sources and			
		- Sound in ducts	acoustics modes of enclosures and			
		- A range of	ducts Appreciate how to formulate			
		examples/applications in physical	solutions to predict sound fields			
		acoustics	generated by complex source			
			distributions Demonstrate how to use			
			more advanced analytical methods in			
			theoretical acoustics.			
			Reading, understanding and interpreting scientific texts and papers.			
			- Critical analysis and evaluation			
			Communication of technical material			
			in written reports.			
			Apply advanced mathematical			
			methods for solving partial differential			
			equations Solve examples of			
			practical problems in physical			
			acoustics.			

					L	
University of	Human	Sound; The human auditory	Ability to demonstrate knowledge and	Lectures on	https://www.sou	10.01.2019.
Southampton	Responses to	system.; Noise and health Hearing	understanding of: - principal responses	Sound and	thampton.ac.uk	
	Sound and	damage risk.; Non-auditory health	to noise (i.e., perception, loudness,	lectures on	/courses/module	
Acoustical	Vibration	risks, vegetative responses.;	annoyance, speech interference,	Vibration.	s/isvr3061.page#	
Engineering		Disturbance of speech	noise-induced hearing loss)		aims_and_objec	
		communication Prediction.;	Understand the principal responses to		tives	
		Standards.; Annoyance at home	whole-body vibration (i.e., perception,			
		and in other environments.; Sleep	comfort, motion sickness, performance,			
		disturbance.; Planning and noise.	and health) and hand-transmitted			
		Vibration; Principles of the	vibration (i.e., the hand-arm vibration			
		measurement and evaluation of	syndrome, including vibration-induced			
		human vibration exposures.;	white finger) Understand the principal			
		Standards and Directives for	methods of measuring and evaluating			
		whole-body vibration and hand-	noise and vibration with respect to			
		transmitted vibration.; Health	human responses Recognise and			
		effects of whole-body vibration.;	select appropriate standards,			
		Effects of whole-body vibration on	recommendations, or regulations that			
		activities.; Discomfort produced by	apply to particular environments (e.g.,			
		whole-body vibration.; Vibration	domestic, commercial, transport,			
		thresholds.; Building vibration.;	industrial).			
		Biodynamics (body transmissibility,	Subject Specific Intellectual and			
		apparent mass, models).; Seating	Research Skills: Having successfully			
		dynamics (transmissibility, SEAT	completed this module you will be able			
		value, models).; Health effects of hand-transmitted vibration, their	to: - Read, understand, and interpret			
		diagnosis, and prevention.;	the literature relating to noise and vibration effects upon people -			
		Measurement, evaluation, and	Understand the principles of measuring,			
		assessment of the vibration of	evaluating, and assessing both noise			
		powered hand-held tools.; Causes	and vibration Apply current standards,			
		of motion sickness in marine, land	limits, and regulations for both noise			
		and air transport.	and vibration Recognise and select			
			appropriate techniques for the			
			investigation of noise and vibration			
			effects.			
			Transferable and Generic Skills: Having			
			successfully completed this module you			
			will be able to: -Access and understand			
			British, European, and International			
			standards Access and understand			
			European Union Directives Deal with			
			logarithmic quantities, SI units, and			
	1		loganninic quannies, si uniis, ana	1	l	

			reference values Contribute confidently and appropriately to discussions on similar topics Discuss noise and vibration issues in a multi- disciplinary environment Assess risk based on technical knowledge and legal requirements. Subject Specific Practical Skills: Having successfully completed this module you will be able to: - Measure noise and vibration (both whole-body vibration and hand-transmitted vibration) to which people are exposed Evaluate noise and vibration to which people are exposed Assess the severity of noise and vibration to which people are exposed Recognise means of preventing, or minimising, undesirable effects of noise and vibration on people.			
University of Southampton Acoustical Engineering	Vehicle Powertrain, Noise and Vibration	Powertrain excitation: -Review of balancing of rotating and reciprocating machinery -Primary and secondary reciprocating forces and moments in multi- cylinder engines; Balancing methods - Combustion forcing and torque fluctuations; - Engine working loads, Turning-moment diagram and flywheel design, Friction clutch Power Transmission: - Hydrokinetic drives: Fluid coupling and torque conversion, Torque-speed characteristics Gears: Design and analysis, Simple, Compound, Epicyclic and differential gears. Automotive applications Drive Trains: Design and Analysis, Planetary Gear Trains - Basic design of a manual gearbox	Understand noise transmission in a vehicle and recommend appropriate methods for noise control - Understand how road roughness is quantified and used in simple vehicle models to predict road induced vibration Basic design of a manual gearbox including the calculations of gear ratios, forces and toques -Select powertrain mount properties to achieve required vibration isolation performance -Discuss sources of noise in automotive vehicles and their characteristics -Cite precise definitions of acoustic quantities and apply fundamental acoustic theory to predict them in a vehicle context -Discuss the motivations for controlling noise and vibration in vehicles Appreciate some of the technical constraints and conflicts in designing a refined vehicle	lectures; assignments	https://www.sou thampton.ac.uk /courses/module s/feeg3002.pag e#aims_and_obj ectives	10.01.2019.

		Powertrain and Chassis Vibration: - Rigid body vibration, design criteria for mounts system optimization, viscoelastic and hydro-elastic isolation mounts, source/receiver mobility models, transmission of powertrain vibration Vehicle Noise: - Fundamentals of acoustics: physical description and quantification of sound Human response and sound quality Motivation for noise control: legislation, quantitative analysis of the drive-by test Noise sources: engine noise, intake and exhaust noise, tyre noise, wind noise Airborne sound transmission: transmission loss through panels, materials for noise control Structure-borne sound transmission: vibration isolation, damping Experimental methods for noise path separation Analysis of engine noise (e.g., engine order): processing of pre- recorded engine noise data. Assignment 1 (Formative) Design of a Manual Gearbox Assignment 2 (Formative) Powertrain vibration related assignment	Ability to: -Calculate the basic loads imposed by gas-based and inertial forces in a multi-cylinder engine - Employ measures to obtain partial or complete compensation for the inertial forces emanating from the crankshaft assembly - Extract relevant information from an engine turning moment diagram in order to design a suitable flywheel - Acquire skills in the design and analysis of gears and gear trains - Become familiar with hydrokinetics powertrains and torque converters - Implement and interpret simple physical models for vibration of a vehicle's powertrain - Create awareness of some of the quality issues related to the design of a luxury vehicle			
University of	Architectural	Building acoustics: - Legal	Ability to: - Understand standard	lectures;	https://www.sou	10.01.2019.
Southamptor	-	framework: building regulations,	measurement methods that are used in	laboratory and	thampton.ac.uk	
Acoustical	Acoustics	particular requirements for schools and hospitals Sound insulation	building acoustics Apply prediction methods to assess the transmission of	tutorial classes; Visiting lectures	/courses/module s/feeg6011.pag	
Acoustical Engineering		(laboratory tests, in-situ tests, single	noise in buildings and its mitigation	from Arup	e#aims_and_obj	
Lingineering		number ratings Rw and Dw,	Apply prediction methods to assess the	Acoustics staff	ectives	
		typical building constructions)	reverberation of sound in rooms			
		Absorption and reverberation time (Sabine and Eyring models, air	Select appropriate building constructions for the solution of			
L	1	Leasing and Family models, all		l		

absorption, typical absorption	practical noise problems and evaluate		
spectra, and requirements for	their performance - Make basic room		
different purposes) Background	acoustic measurements and determine		
noise criteria (NR, PNC, STI);	the various indicators used for		
sources of external noise (rain	auditorium acoustics - Use room		
noise, traffic, etc); sources of noise	acoustics software to model simple		
within buildings (heating,	auditoria		
ventilation and air-conditioning			
noise sources; fans; boilers; chillers;			
packaged units) Vibration			
isolation (of noisy equipment, of			
buildings); ground-borne noise			
from underground railways			
Laboratory sessions: measurement			
of sound insulation; measurement			
of sound absorption.			
Auditorium acoustics: - Subjective			
and objective requirements for			
different rooms (concert halls,			
theatres, opera houses, multi-			
purpose halls) Reverberation			
(T20, T30, EDT); other indicators			
(clarity C80, D50, lateral energy			
fraction, sound strength)			
Absorption of seats, audience,			
other materials, variable			
absorption Scattering and			
diffusion Measurement of			
impulse responses; determination			
of room acoustic parameters from			
the IR Sound source			
characteristics (musical			
instruments, speech, singing;			
sound power, directivity)			
Prediction methods (image			
sources, ray tracing, beam/cone			
tracing, finite differences, modal			
methods, physical scale			
modelling) Public address system			
design for buildings and auditoria.			
- Laboratory sessions:			

							1
			measurement of room impulse responses; use of CATT-Acoustic to predict room acoustics. Optional introductory sessions will be provided for students with no background in acoustics. Special Features - Guest lectures by practicing auditorium designers Practical activity				
			measuring the acoustic				
			performance of an auditorium.				
Unive	ersity of	Numerical	Review of fluid mechanics,	Ability to: - Understand the equations	Lectures;	https://www.sou	10.01.2019.
	ampton	Methods for Acoustics	derivation of the multi-dimensional equations for linear acoustics;	that govern the propagation of sound in a stationary medium Formulate	exercises; weekly 'tutorial'	thampton.ac.uk /courses/module	
Acou	stical		Simple solutions of the unsteady	boundary conditions for practical	class; revision	s/isvr6142.page#	
	eering		equations. ; Time-harmonic	acoustic problems - Understand and	lectures; marked	aims_and_objec	
			acoustics. Complex notation and	evaluate some simple benchmark	coursework	tives	
			the Helmholtz eqn.; Acoustic	solutions for acoustics -Understand the			
			boundary conditions on finite and	underpinning theory and practical			
			infinite boundaries; Time-harmonic	application to acoustics of:; frequency			
			benchmark solutions.; Acoustic	domain Finite Elements; frequency-			
			Finite Elements for the Helmholtz	domain Boundary Elements; The Finite			
			problem: 1-D elements; Numerical	Difference time domain method;			
			dispersion and dissipation, the pollution effect. Acoustic Finite	numerical methods based on ray acoustics - Assess the cost, accuracy			
			Elements for the Helmholtz	and practical limitations of the above.			
			problem: 2-D and 3-D elements.	- Define the equations which govern			
			Boundary element methods for	different classes of acoustical			
			Helmholtz problems. Particular	problemsObtain analytic solutions for			
			issues for unbounded problems.	simple benchmark problems Be able			
			Finite Difference time-domain	to assess the suitability of different			
			methods. Numerical methods	numerical methods for a wide range of			
			based on Ray acoustics.	practical acoustical problems - Be able			
				to further develop and apply the			
				numerical methods presented in the			
				course to new types of analysis in			
				acoustics and other areas.			
				Write simple computer programs and			
				reports To apply critical analysis and			
				evaluation skills To read, understand			
				and interpret scientific papersTo			

			synthesise information from a range of sources To communicate clearly in written reports. Ability to: - Reduce real world acoustical problems to more simple problems amenable to numerical solution - Select an appropriate numerical method for a broad range of problems in acoustics Determine the mesh or grid resolution required for different numerical methods - Validate a numerical code against a relevant benchmark problem. Read and understand user documentation for commercial acoustic code			
University of Southampton Acoustical Engineering	Applied Audio Signal Processing	Introduction/review of normal and impaired hearing (psychoacoustics), room acoustics and key signal processing techniques Audio effects; Comb and all-pass filters; Audio effects processing (including equalization, artificial reverb, non-linear and time-variant effects); Automatic gain control and feedback cancellation; Audio compression; Speech processing (including speech enhancement, recognition, synthesis); Real-time audio processing Spatial Audio; Binaural audio; Cross-talk canceller and OPSODIS; Wavefield synthesis and Ambiosonics Array Signal Processing; Uniform linear arrays; Delay sum beamformer; Optimal beamforming; Direction of arrival estimation; Signal detection Case studies, such as; Hearing aids and cochlear implants	Ability to: - Identify and apply appropriate signal processing techniques to analyse audio signals to achieve desired outcomes Argue the advantages and limitations of different signal processing techniques in a given context Select, implement, apply and evaluate signal processing algorithms to create a range of audio effects Select, implement, apply and evaluate signal processing algorithms to analyse signals from sensor arrays Describe the basic working principles of human speech production and use signal processing techniques to simulate the process Select, implement, apply and evaluate signal processing algorithms for spatial audio reproduction Describe and critique the use of signal processing techniques in hearing aids Describe, select and evaluate digital audio compression techniques.	Formal lectures; Tutorials; Recorded video lectures; Flipped classroom activities; Practical signal processing exercises; Signal processing assignments	https://www.sou thampton.ac.uk /courses/module s/isvr3071.page# aims_and_objec tives	10.01.2019.

University of Southampton	Active Control of Sound and Vibration	; Active control of plane waves in ducts.; Strategies for active control including reflection and	Ability to: Understand the equations that govern the propagation of sound in a stationary medium active control	Series of lectures, Laboratory	https://www.sou thampton.ac.uk /courses/module	10.01.2019.
Acoustical Engineering		absorption.; The use of quadratic optimisation in determining the performance of control systems.; The principles of single-channel control systems for tonal and random signals.; The use of the LMS algorithm in active control systems.; Active control of free field sound.; Multichannel control of tones and random disturbances.; Active control of enclosed sound fields.; Active structural acoustic control using integrated actuators and sensors.; Stability, performance and robustness of feedback systems.; Active headsets.; Active vibration isolation systems.; Active control of waves in structures.; Adaptive signal processing and identification.; Control of nonlinear systems.; Modal control.	of sound in ducts Develop reacceptance method for feedback control Understand nonlinear control strategies and their potential applications Understand multivariable feedback control system. - Formulate independent modal space control Understand the fundamentals of harmonic control Apply active structural acoustic control Formulate single channel control systems Understand and formulate active control of free field sound field Understand and formulate active control of enclosed sound fields Understand the principle of single- channel control systems Formulate multi-channel feedforward of tones and random disturbances Analyse stability in feedback control Understand and analyse performance and robustness of feedback systems Understand how active headsets work. Transferable and Generic Skills: Having successfully completed this module you will be able to: - Able to write simple computer programs and reports Able to Apply critical analysis and evaluation skills Able to read, understand and interpret scientific papersAble to synthesise information from a range of sources Able to communicate clearly in written reports. Subject Specific Practical Skills: Having successfully completed this module you will be able	sessions. Problem based- learning – Simulation in MATLAB using measured data.	s/isvr6139.page# aims_and_objec tives	

Т

Introduction: Terminology: Prevention Inversity of Southampton Advanced Introduction: Terminology: Prevention Vibration Advanced Introduction: Terminology: Prevention Vibration Advanced Introduction: Terminology: Prevention Vibration Advanced Introduction: Terminology: Prevention Acoustical Engineering Advanced Introduction: Terminology: Prevention Acoustical Engineering Advanced Introduction: Terminology: Prevention Acoustical Engineering Commonly the methods onclube the right requency: Prevention Hittps://www.sou 10.01.2019. Maxies (ALL) Maxies of previous of the regress Prevention based Privation Introduction: Research Sills: Advanced Introduction: Terminology: Prevention based Privation Vibration Advanced Introduction: Terminology: Prevention based Privation Introduction: Acoustical Engineering Introduction: Terminology: Review Preventonthe contriol continuous and discret strutural continu

			0.000	
Γ	input power and mobility of finite	modelling assumptions in the light of		
	and infinite systems.	experimental data.		
	Discrete Multiple Degree of	Subject Specific Practical Skills:-		
	Freedom (MDOF) systems; Review	perform a vibration based transfer		
	of 2 DOF & extension to n DOF	function measurement using an		
	systems; Free response (eigen	instrumented hammer and a		
	problem), orthogonality and	commercial frequency analyser;- assess		
	scaling of modes; Forced response	the reliability of measured transfer		
	(direct and modal summation).;	functions;- process/interpret measured		
	Use of finite element analysis to	transfer functions using an experimental		
	obtain system matrices.; Model	modal analysis technique.		
	reduction techniques (Guyan			
	reduction).; Damping matrices,			
	normal and complex modes, loss			
	factor.			
	Experimental techniques -			
	Vibration testing (instrumentation,			
	shaker & hammer testing).;			
	Experimental modal analysis			
	(quad picking, circle fitting,			
	rational fraction polynomial			
	method).			
	Waves; Free wave propagation in			
	shafts, beams and plates.			
	; Non-dispersive vs. dispersive			
	waves, cut-off frequencies;			
	Dispersion equation and curves;			
	Phase/group velocity;			
	Characteristic impedances; Wave			
	energy and power; Reflection &			
	transmission coefficients; Wave			
	excitation.			
	Statistical energy analysis -			
	Introduction: power and energy,			
	power balance, coupling power			
	proportionality.; SEA equations,			
	weak and strong coupling.; Energy			
	equations of a simple oscillator,			
	coupled oscillators and multi-			
	modal systems.; Wave transmission			
	and coupling loss factors,			

		structural-acoustic coupling.; SEA modelling.; Problems and pitfalls with SEA.; Experimental SEA Special Features The module includes a practical laboratory to perform a vibration test on a structure using typical state-of-the- art equipment and techniques that are used in industry.				
University of Southampton Acoustical Engineering	Aeroacoustics	- Brief review of fluid mechanics: conservation laws, thermodynamics, vortex dynamics Propagation of linear waves in moving media: linearized Euler equations, acoustics, vortical and entropy waves, the convected wave equation, basic properties of sound waves in moving media, sound refraction by non-uniform flows Acoustic impedance with flow: definition and properties of acoustic impedance, Helmholtz resonator, Ingard and Myers conditions for impedance with flow Methods for solving the wave equations: Green's functions, Green's formula, far field approximations, compact sources, and interferences Noise radiation by simple sources: types of sources, effect of source motion, convective amplification, the Doppler effect Sound radiation by free shear flows: Lighthill's analogy, application to noise from turbulence Noise radiation from solid surfaces: general theory of Flows Williams Hawkings and application to wave extrapolation.	Discuss the generation and propagation of sound in fluids - Explain the principle of the Lighthill's acoustic analogy, and how this is related to sound generated by turbulent flows - Explain how scaling laws may be derived and to interpret these Explain how mean flow and boundaries can affect sound generation and propagation Apply aeroacoustics theory to new problems Understanding of some of the current state-of-the-art research in aeroacoustics. Transferable and Generic Skills: - Write computer programs and reports Apply critical analysis and evaluation skills Ability to read, understand and interpret scientific papers. Synthesise information from a range of sources. Communicate clearly in written reports. Subject Specific Practical Skills - Recognize and define terms specific to aeroacoustics Use relevant mathematical methods to solve problems in aeroacoustics Synthesise theory from different fields of study (e.g. fluid dynamics, acoustics, mathematical methods). Model some complex noise generation problems	Sessions which will be used to present the theory and worked examples; Tutorial classes	https://www.sou thampton.ac.uk /courses/module s/feeg6004.pag e	10.01.2019.

		- Rotor noise: description of source mechanisms from aerofoils, - Duct acoustics: sound field in ducts and wave guides, properties of duct modes Turbo-machinery noise: fan rotor-alone tones, interaction tones, buzz-saw noise Aeolian tones: cavity noise, flow-acoustic feedback loops.	Appreciate the limitations of different modelling techniques, Cognitive Skills - Analyse aeroacoustics problems and select appropriate methods for solution of the problems Assess whether the complexity of a problem in aeroacoustics may be reduced, e.g. by the use of scaling laws Improved ability to read and interpret scientific textbooks and papers related to aeroacoustics.			
Technical University of Denmark (DTU) Electrical Engineering – Acoustics Study Line	Audio Information Processing Systems	Representing audio: Audio features and representations. Creating audio: Audio synthesis using statistical and physical models. Manipulating audio: Noise reduction, audio effects, and source separations. Extracting information from audio: Estimation, detection, and classification.	Describe the use of audio information processing systems in application areas such as digital media systems, medicine, and creative arts. Describe the use of signal processing, acoustics, and auditory perception in audio information processing systems. Design and implement audio information processing systems for creating, modifying, and extracting information from audio. Manipulate different representations of audio including waveforms and spectra, cepstral and chroma features, source-filter and sinusoidal models, and perceptual audio coding. Synthesize audio such as speech and music based on statistical and physical models. Transform and process audio including noise reduction, time-scale modification, audio effect filtering, and 3D-spatialization. Extract information from audio such as estimating tempo and fundamental frequency as well as detecting and discriminating between different audio sources.	Lectures, exercises, and projects	http://kurser.dtu. dk/course/2018- 2019/02452?men ulanguage=dk	10.01.2019.

Technical University of Denmark (DTU) Electrical Engineering – Acoustics	Fundamentals of Acoustics and Noise Control	Fundamental acoustic concepts and measuring units. Human hearing and speech. Measurement and evaluation of sound, A-weighting, time constants and equivalent sound pressure level. Octave and one- third octave band analyses of	Separate mixed audio into individual sources using techniques such as independent component analysis. describe fundamental acoustic concepts such as the sound pressure, the particle velocity, the speed of sound, the characteristic impedance of the medium describe and interpret plane sound fields, including standing waves describe and interpret the sound field	Lectures, problem solving and compulsory hand-ins (problem sets and laboratory exercise reports)	http://kurser.dtu. dk/course/2018- 2019/31200?men ulanguage=en	10.01.2019.
Study Line		noise. Addition of noise from uncorrelated sound sources. The use of complex notation. Energy density, sound intensity and sound power. Impedance concepts. Plane and spherical sound waves, interference fields. Reflection and transmission of sound. Sound radiation from monopole and dipole sources, sound radiation from a piston in a baffle. Normal modes in a rectangular room. The diffuse sound field, the energy balance equation in a room and the reverberation time. Sound absorbing materials. Natural modes and resonances in simple mechanical and acoustic systems. Structure-borne sound, vibration isolation of machinery. Sound insulation of single and double constructions. Electrodynamic loudspeakers.	generated by monopoles and dipoles describe the fundamental properties of transducers calculate sound transmission between two fluids explain the effect of a reflecting plane explain how sound is measured, describe the decibel scale, A-weighted levels, and octave and one-third octave bands explain the usefulness of the concept of sound power and describe how this quantity is used describe and interpret resonances and modes in rooms describe fundamental properties of our hearing, hearing threshold, masking calculate sound transmission through simple constructions.			
Technical University of Denmark (DTU)	Electroacoustic Transducers and Systems	Analogies between mechanical, acoustical and electrical systems. Transducers: loudspeakers, microphones and accelerometers; theory, construction, directivity, radiation, measurements and	Explain the principles of analogies between electrical, mechanical and acoustic systems Draw equivalent circuits for simple mechanical and acoustic systems	Lectures, problems, simulations, compulsory laboratory exercises and a	http://kurser.dtu. dk/course/2018- 2019/31220?men ulanguage=en	10.01.2019.

Electrical Engineering – Acoustics Study Line		calibration. Theory of two-channel stereo. Microphone and loudspeaker configurations. The exercises comprise the measurement of microphones and loudspeakers and stereo recording. PS pice modulization is used for the practice problems. The course also contains a project on loudspeaker system design	Apply the analogies when analysing and modelling electro acoustic devices Explain the two basic techniques in stereo recording Predict the frequency response of dynamic- and condenser microphones and explain the influence of each microphone component in this response Predict the frequency response of electro dynamic loudspeakers and explain the influence of each loudspeaker component on the response Explain the effects of closed and vented enclosures on frequency response and impedance of the loudspeaker and to design such enclosures for a given loudspeaker unit Explain what the common problems in crossover filters design are and how to solve them Select a suitable microphone stereo setup in a simple practical recording situation Make a frequency analysis of simple linear circuits in PSpice	loudspeaker project		
Technical University of Denmark (DTU) Electrical Engineering – Acoustics Study Line	Acoustic Communication	The anatomy and physiology of the ear. Psychophysical principles and psychoacoustic measuring methods. Psychoacoustics (hearing threshold, loudness, masking, etc). Speech and speech intelligibility. Hearing impairment. Principles of hearing aids and hearing aid fitting. Hearing conservation and hearing protectors. Noise annoyance.	Describe the structure of the ear and explain the function of the various components Sketch the hearing threshold in a free field (dB SPL-Frequency) and interpret the course of the curve Describe classical and adaptive psychometric methods, signal detection theory, and explain a psychometric function Define the concept of loudness and loudness level and describe Stevens' power law	Lectures, exercises with reports	http://kurser.dtu. dk/course/2018- 2019/31230?men ulanguage=en	10.01.2019.

			Explain the concept of masking (simultaneous-, forward-, backward-) and it's relation to the function of the inner ear Explain how speech is produced and describe the physical properties of the speech signal Define the concept of speech intelligibility, explain how different factors influence intelligibility, and discuss methods for measuring and calculation of speech intelligibility (AI, SII, STI) Describe the principles of sound localization and sketch results of localization measurements Discuss different diagnostic techniques, classify different hearing loss types by means of an audiogram, and explain the implication of a hearing loss for the perception of sound Write an exercise report that is understandable for next year's students			
Technical University of Denmark (DTU) Electrical Engineering – Acoustics Study Line	Technical Audiology and Experimental Hearing Science	E.g.: Methods for measurement of linear and non-linear (adaptive) hearing aids. Clinical tests on test subjects, e.g. auditory brain stem response (ABR), cochlear emission (OAE), speech production and speech intelligibility.	Explain and discuss the principles behind auditory evoked potentials Explain and discuss the principles behind otoacoustic emissions Explain and discuss the principles behind measurements of speech production and speech intelligibility Apply the principles of the above measures in practical lab-based exercises Evaluate and interpret the results from the above measures and relate these to normal/impaired hearing function Plan and carry out a small research project in teams, based on current research and diagnostic techniques	Lectures and laboratory work	http://kurser.dtu. dk/course/2018- 2019/31232?men ulanguage=en	10.01.2019.

			Compare the results of the research project with supplied current literature Summarise and evaluate the results of the research project by producing and presenting a poster Communicate the project results to a non-specialist audience			
Technical University of Denmark (DTU) Electrical Engineering – Acoustics Study Line	Auditory Signal Processing and Perception	Psychophysics and physiology of the auditory system. Models of auditory signal processing and perception. Neurophysiological measuring methods. Relation between neurophysiological measurements and psychoacoustical (behavioural) findings. Neural imaging techniques. Technical and clinical applications. Compensation strategies in modern hearing aids and cochlear implants. There are classroom-based problem-solving sets and seven MATLAB-based exercises that complement some of the lectures in the course.	Describe and apply basic signal analysis concepts (e.g., convolution, correlation, Fourier transform, sampling, quantization, aliasing) categorize different types of hearing impairments and their perceptual consequences, and evaluate potential compensation strategies in modern hearing aids and cochlear implants interpret the concepts of signal detection theory and explain their implications for psychophysical measurement methods analyse the processing of sound in the cochlea (inner ear), predict the features of cochlear transformation using an electrical circuit (PSpice) characterise the auditory system's frequency selective properties, demonstrate the concept of masking, and evaluate models of auditory masking explain the auditory system's properties of temporal processing, calculate the modulation spectrum of a stimulus, and evaluate the concept of modulation-frequency selective processing discuss methods to measure loudness and intensity discrimination; evaluate models of loudness and intensity coding in the auditory system demonstrate and discuss the principles of spatial and binaural hearing; predict	Lectures and exercises	http://kurser.dtu. dk/course/2018- 2019/31236?men ulanguage=en	10.01.2019.

Technical	Architectural	The reflection and absorption of	binaural perception data using an equalization-cancellation model relate speech intelligibility performance to the properties of stimulus, room acoustics and state of hearing; compare and evaluate different methods for the measurement of speech intelligibility discuss models of signal processing in auditory neurons, evaluate physiologically inspired models of auditory perception explain methods for measuring otoacoustic emissions and acoustically evoked brain potentials; categorize different types of evoked potentials; interpret the role of cochlear processing for the generation of brainstem potentials Explain the principles and basic	Lectures,	http://kurser.dtu.	10.01.2019.
University of Denmark (DTU) Electrical Engineering – Acoustics Study Line	Acoustics	sound. Panel absorbers, resonance absorbers and porous absorbers. Theoretical and subjective room acoustics. Acoustics in new and old theatres, churches and concert halls. Room acoustic parameters. Designing of rooms for speech and music. The use of scale models and computer models as design tools. Variation of room acoustics by physical changes and by electronic means. The sound insulation of buildings and building elements from external and internal noise, including forced and resonant transmission, and single and double walls. Sound radiation from vibrations in walls. Introduction to	assumptions behind theories used for sound insulation, such as sound radiation and structural waves in plates and statistical energy analysis (SEA). Predict the flanking transmission and sound propagation in buildings with homogeneous single walls. Calculate the air borne and impact sound insulation of common single and double building constructions, including elements such as floor coverings, floating floors, doors and windows. Describe the sound insulation of older buildings and of modern lightweight constructions. Calculate the sound absorption coefficient for common sound absorbers, including porous-, panel- and resonant absorbers. Relate the objective acoustic parameters with the subjective	laboratory exercises, excursion and project work. The projects are similar to real consultant projects, and when possible, include cooperation with external partners	dk/course/2018- 2019/31240?men ulanguage=en	

		structure borne sound and statistical energy analysis (SEA). Floating floors and impact sound insulation. Flanking transmission and sound propagation in building constructions. Sound insulation of older buildings and of modern lightweight constructions. Building acoustic test measurements. About one third of the time is used on a building project in which the acoustical conditions are solved by using the knowledge gathered during the course.	impression of the acoustics of a room or building (such as early decay time, clarity, sound reduction index etc.) Predict the influence of room geometry and absorption, reflection, diffraction and diffusion properties of surface on the impulse response and perceived acoustic condition Design the acoustics of rooms for speech and music in cooperation with architects and building engineers. Understand the basic principles regarding introducing loudspeaker systems for amplification and reverberation enhancement in rooms. Describe the principles and basic assumptions of computer prediction programs such as "Odeon" and "Bastian" and operate these. Explain the basic assumptions and principles of and apply measurement methods in architectural acoustics, including sound insulation, reverberation time, speech intelligibility, sound absorption etc.			
Technical University of Denmark (DTU) Electrical Engineering – Acoustics Study Line	Environmental Acoustics	Human hearing in relation to annoyance and risk of hearing damage due to noise exposure. Types of environmental noise sources. Noise exposure metrics. Acoustic regulation of workrooms. Outdoor sound propagation and noise screens. Noise from roads, railways and airports. Noise from industrial plants. Environmental requirements for noise and vibration. Sound insulation of windows and facades. Sound level measurements and noise	Ability to: classify environmental noise sources evaluate potential health effects of noise exposure depending on the nature and level of the sound source analyse traffic, industrial, and workplace noise and quantify their degree of annoyance describe noise limits for different areas describe outdoor sound propagation and explain by which factors it is influenced plan and perform a noise investigation justify the metrics used as noise indicators for the chosen situation	Overview lectures, excursions, and project work	http://kurser.dtu. dk/course/2018- 2019/31250?men ulanguage=en	10.01.2019.

		analysis. On-site noise investigation.	relate the investigation results to noise regulations, perceived annoyance, and potential health effects evaluate possible means for reduction of the noise communicate the motivation, methods, results, and interpretation of the noise investigation			
Technical University of Denmark (DTU) Electrical Engineering – Acoustics Study Line	Advanced Acoustics	Plane waves and higher-order modes in ducts. The modal theory of room acoustics; statistical room acoustics. Sound power determination. Measurement of sound intensity. Numerical acoustics (finite element and boundary element methods). Radiation of sound from point sources and plane, cylindrical and spherical sources. Scattering of sound. An introduction to near field acoustic holography and beamforming. Spatial sound, ambisonics and sound field reproduction with loudspeaker arrays.	Ability to: Analyse the sound field inside a duct at low frequencies and design silencer systems. Analyse the timbre of wind musical instruments. Examine the sound field inside a duct, derive the Green's function and explain the propagation of sound inside it. Analyse the sound field in a room based on the modal theory. Derive the Green's function in a room and use it to explain the central acoustic processes that occur in a room. Examine the sound field in a room based on statistical wave models, and how these methods are used in practical applications of room acoustics. Analyse and interpret the decay of sound in a room, based on the modal and statistical theories. Examine a sound field based on its active and reactive intensity and evaluate the usefulness and limitations of intensity measurement. Describe the radiation from point sources, and how coherent sources affect each other. Interpret the expression for the sound field radiated by a spherical source. Illustrate the use of spherical harmonic expansions for sound radiation and scattering.	Lectures, problem solving, project work (laboratory exercises, MATLAB simulations and finite element calculations)	http://kurser.dtu. dk/course/2018- 2019/31260?men ulanguage=en	10.01.2019.

			Analyse the sound field radiated by a planar source, using space domain and wave number domain formulations. Illustrate the fundamentals of microphone array methods (beamforming and acoustic holography). Describe how these methods are used to analyse sound fields.			
Technical University of Denmark (DTU) Electrical Engineering – Acoustics Study Line	Structure-Borne Sound	Mechanisms for the generation of vibration and sound in structures. Simple resonators and models for damping mechanisms. Concepts of mobility and mechanical impedance. Vibro-acoustic measurement techniques. Introduction to applied signal analysis (spectral analysis, estimation of transfer functions, etc). The generation of vibration and sound waves in solids and structures (structure borne sound). Longitudinal waves and bending waves in beams and plates. Analytical and statistical methods for calculating structure borne sound and transmission in complex structures. Vibration isolation, attenuation and damping of structure borne sound in equipment and machinery. Sound radiation from vibrating structures (plates, cylinders, cabinets, etc). Active control and damping of vibration and sound radiation. Principles for altering the transmission and radiation properties of structures.	Ability to: explain the fundamental mechanisms and phenomena which generate vibration and sound waves i solid media and structures conduct calculations and analyses of the dynamic properties of simple resonant systems derive equation of motion for simple resonators and explain frequency responses and determination of damping properties, e.g. from Nyquist diagram explain/evaluate wave phenomena for longitudinal waves and bending wave fields in beams and rods and calculate vibrational responses demonstrate the use of mobility methods for calculating response of built-up systems conduct and report on vibro-acoustic measurements, including applied signal analysis (spectral analysis, estimation of transfer functions, structural damping properties, etc.) explain principle of vibration isolation and calculate insertion loss of simple vibration isolated sources explain reasons for losses in structures and principles for added damping and calculate damping of single-layer viscoelastic vibration damping	Lectures, compulsory mini- projects and experimental exercises, problem solving and review of written exercises	http://kurser.dtu. dk/course/2018- 2019/31270?men ulanguage=en	10.01.2019.

			evaluate reflection and attenuation of structure borne waves in built-up systems explain and calculate wave fields and propagation of bending waves in plates apply Statistical Energy Analysis and MATLAB-based finite element analysis for calculating vibration in systems explain and calculate sound radiation from compact simple sources and from plate-like structures, cabinets and cylinders			
University of Le Mans Acoustics and Vibration	Point Mechanics	Details are not available	Set up the basic tools needed to apply them in vibration, solid mechanics, acoustics, etc.	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.
University of Le Mans Acoustics and Vibration	Elements of Acoustics	Details are not available	 To master the concepts of intensity (amplitude, sound levels, weightings, loudness, sum of sources), height (frequency) and timbre (spectrum) To understand the mechanisms of spatial tracking To know the physiology of the ear To discover notions of audio (compression) and professional acoustics (building, rooms) 	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.
University of Le Mans Acoustics and Vibration	1D waves	Details are not available	Understand the main concepts of acoustics by making use of a minimum of mathematical developments	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.
University of Le Mans	Instrumenta- tion for	Details are not available	- Know the principles of electrodynamic and electrostatic transductions	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme	10.01.2019.

				-		
Acoustics and Vibration	Acoustics and Vibration	Dataile are not available	 Know how to select a sensor and an actuator for a given problem Know how to calculate the voltages and powers involved in the measurement chain Know the basics of digitization 	Detaile are set	(In French)	10.01.0010
University of Le Mans Acoustics and Vibration	Vibrations of 1D systems	Details are not available	 To know how to pose and to solve a problem of vibration with 1 degree of freedom, free or forced, amortized or not To know to identify a clean pulsation, a pseudo-pulsation, a pulsation of excitation, resonance To know to explain what is a transitional regime and a permanent regime Know how to write the equation of the movement of an oscillator and know how to solve it 	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.
University of Le Mans Acoustics and Vibration	Fundamental Equations of Acoustics	Details are not available	 Know how to obtain the wave equation from the conservation equations Revisit the notions seen ACOU 2 Deal with the problems of free and forced oscillations in 1D 	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.
University of Le Mans Acoustics and Vibration	3D plane wave	Details are not available	 Extend to 3 dimensions the fundamental equations of acoustics Reinforce and build knowledge of previous modules To know how to solve plane wave problems in 3D 	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.
University of Le Mans Acoustics and Vibration	Electroacousti cs	Details are not available	 Provide the concepts necessary to deal with problems of guided acoustics or acoustic transduction by the formalism of electroacoustics apply these notions to the study of acoustic transducers 	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.

University of Le Mans Acoustics and Vibration	N-dimensional Systems	Details are not available	 To know how to write the equations of the movement for a mechanical system with 2 or 3 degrees of freedom To know how to extract the free answer and the forced answer of a system of oscillators Knowing how to obtain the characteristics of the natural modes of oscillations, notably the modal matrix To know how to diagonalize the structural matrices of inertia and stiffness for systems with 2 or 3 dof 	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.
University of Le Mans Acoustics and Vibration	Elements of Sound Radiation	Details are not available	 Reinforce and build knowledge of previous modules: fundamental equations, 1D waves, fluid column, transmission reflection of a plane wave on an interface To apprehend the acoustic radiation, by that of the monopolar and dipolar 	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.
University of Le Mans Acoustics and Vibration	Lagrangian Mechanics	Details are not available	 elementary sources Have the necessary tools to obtain the equations of motion of a rigid solids system by using the Virtual Powers Principle, then by using the Hamilton Variational Principle, for a system of rigid solids. To know how to identify a rhéonome, scleronome, holonomic, non- holonomic link To know how to choose the virtual velocity field which is suitable for the resolution of the problem To know how to use the Lagrange multipliers To know how to pose an optimization problem in the form of minimization of integral Knowing how to use the Hamilton Variational Principle 	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.

University of Le Mans Acoustics and Vibration University of	Office Acoustics Design	Details are not available Details are not available	 Apprehending the profession of acoustician in a design office Hover over some of the themes treated in BE: room acoustics, building acoustics, environmental acoustics Introduce the basic notions of 	Details are not available Details are not	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French) https://sites.googl	10.01.2019.
Le Mans Acoustics and Vibration	Acoustic Propagation in Isotropic Solids		 acoustic propagation in isotropic solids: propagation equation, monochromatic planar waves, transmission and reflection phenomena, application to Evaluation and CND Know what a compression wave and a shear wave are and what condition (s) they can be generated Know how to formally write boundary conditions at the interface separating two fluid or solid media Knowing how to determine critical angles for a given interface, using circles of slowness Know how to make the connection between the fluid / structure coupling and the ultrasonic propagation in a solid medium 	available	e.com/site/licenc eacoustiquelema ns/programme (In French)	
University of Le Mans Acoustics and Vibration	Basics of Acoustics	Details are not available	To acquire the basic knowledge in acoustics and vibrations necessary to be able to follow the professional courses	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.
University of Le Mans Acoustics and Vibration	Experimental Acoustics	Details are not available	Learn to use the main acoustic measuring instruments	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.

University of Le Mans Acoustics and Vibration	Experimental Vibrations	Details are not available	Learn to use the main vibration measuring instruments	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.
University of Le Mans Acoustics and Vibration	Perception	Details are not available	Basics of psychoacoustics, ear physiology and pathologies	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.
University of Le Mans Acoustics and Vibration	Software for Acoustics	Details are not available	Introduction to the main acoustic software used in industry: - Acoubat (building acoustics) - CATT-acoustic (room acoustics) - CadnaA (environmental acoustics)	Details are not available	https://sites.googl e.com/site/licenc eacoustiquelema ns/programme (In French)	10.01.2019.